王少敏
(大理学院数学与计算机学院,云南大理 671000)
利用极小作用原理研究一类二阶系统的周期解
王少敏
(大理学院数学与计算机学院,云南大理 671000)
研究了一类非自治二阶哈密顿系统周期解的存在性,在非线性项F(t,x)= F1(t,x)+F2(t,x)满足条件(A)及F1(t,x),F2(t,x)分别满足一定条件时,通过使用极小作用原理获得了一个新的周期解的存在性定理。
周期解;极小作用原理;二阶系统
[1]Wu X,Chen Sh X,Teng K M.On variational methods for a class of damped vibration problems[J].Nonlinear Anal,2008,68 (1):1432-1441.
[2]Rabinowitz P H.On subharmonic solutions of Hamiltonian systems[J].Comm Pure Appl Math,1980,33(1):609-633.
[3]黄文念.一类二阶Hamilton系统周期解的存在性[J].河南理工大学学报:自然科学版,2010,29(1):126-130.
[4]贾宏恩,刘喜兰.一类非自治二阶系统的周期解[J].重庆交通大学学报:自然科学版,2009,28(2):330-332.
[5]Tang C L.Periodic solutions for non-autonomous second order systems with sublinear nonlinearity[J].Proc Amer Math Soc,1998,126(1):3263-3270.
[6]Wu X P,Tang C L.Periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials[J].Nonlinear Anal,2003,55:759-769.
[7]Ma J,Tang C L.Periodic solutions for some nonautonomous second-order systems[J].J Math Anal Appl,2002,275(1):482-494.
[8]唐春雷,从志坚,孟世才.具有偶型位势的二阶系统周期解的存在性定理[J].西南师范大学学报:自然科学版,2002,27 (5):637-640.
[9]赵军,高岩.二阶线性系统族的共同二次Lyapunov函数[J].重庆师范大学学报:自然科学版,2012,29(4):52-56.
[10]Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].Berlin/New York:Springer-Verlag,1989.
Periodic Solutions for a Class of Second Order Systems by the Least Action Principle
WANG Shao-min
(Department of Mathematics and Computer,Dali University,Dali 671000,China)
Existence of periodic solutions for a class of non-autonomous second order Hamiltonian systems is studied.When the nonlinear term F(t,x)=F1(t,x)+F2(t,x)satisfies condition(A)and F1(t,x),F2(t,x)satisfy many conditions,one new existence theorem of periodic solution is obtained by the least action principle.
periodic solutions;the least action principle;second order systems
O177.25
A
1674-8425(2014)03-0155-04
10.3969/j.issn.1674-8425(z).2014.03.029
2013-10-18
云南省科技厅应用基础项目(2011FZ167);云南省教育厅科学研究基金项目(09Y0367)
王少敏(1975—),女,云南大理人,硕士,副教授,主要从事非线性分析的研究。
王少敏.利用极小作用原理研究一类二阶系统的周期解[J].重庆理工大学学报:自然科学版,2014(3): 155-158.
format:WANG Shao-min.Periodic Solutions for a Class of Second Order Systems by the Least Action Principle[J].Journal of Chongqing University of Technology:Natural Science,2014(3):155-158.