何国朝, 王广强, 黄文婷, 邹银桥, 伍 静, 梁华英, 张玉泉, Charllote M ALLEN
藏东玉龙斑岩铜矿带扎拉尕含矿斑岩体锆石U-Pb年龄及其地质意义
何国朝1,2, 王广强2,3, 黄文婷2,3, 邹银桥2,3, 伍 静2*, 梁华英2, 张玉泉2, Charllote M ALLEN4
1. 广西有色金属集团 资源勘查有限公司, 广西 南宁 530022; 2. 中国科学院 广州地球化学研究所 中国科学院矿物学与成矿学重点实验室, 广东 广州 510640; 3. 中国科学院大学, 北京 100049; 4. Research School of Earth Sciences, Australian National University, Canberra ACT0200, Australia
玉龙斑岩铜矿带扎拉尕斑岩铜钼矿床位于玉龙斑岩铜矿带中北部, 赋矿岩体侵入下二叠统火山岩及三叠系砂泥岩中, 主要由早阶段为二长花岗斑岩及晚阶段正长花岗斑岩组成。分析了早阶段二长花岗斑岩及晚阶段正长花岗斑岩锆石LA-ICP-MS U-Pb年龄。早阶段二长花岗斑岩该年龄为(38.5±0.2) Ma, MSWD=1.12, 晚阶段正长花岗斑岩该年龄为(38.5±0.2) Ma, MSWD=1.08, 早阶段和晚阶段含矿斑岩体锆石U-Pb年龄完全一致。这表明早晚两阶段成矿岩体是在很短的时间间隔内形成的。扎拉尕赋矿斑岩体形成年龄为(38.5±0.2) Ma。据扎拉尕斑岩矿床形成时代及藏东地区在始新世至渐新世地质构造背景, 提出扎拉尕斑岩矿床和玉龙斑岩铜矿带的形成与印度板块-欧亚板块碰撞在藏东地区形成的走滑构造活动诱发的岩浆活动有关, 为陆陆碰撞走滑构造环境的斑岩矿床。
斑岩铜钼矿床; 成岩成矿时代; 碰撞与成矿; 西藏东部
西藏东部玉龙斑岩铜矿带是世界上重要的碰撞造山环境斑岩铜矿带, 该斑岩铜矿带长约300 km, 宽10~30 km, 含一个超大型斑岩铜矿床(玉龙)、两个大型斑岩铜钼矿床(多霞松多和马拉松多)、两个中型斑岩铜矿床(扎拉尕、莽总)及数十个矿化点。自该矿带发现以来, 国内外学者对玉龙斑岩铜矿带及其南侧沿哀牢山-红河巨型走滑断裂带分布的新生代斑岩铜钼(金)矿床开展了大量的研究工作[1–34]。目前, 对藏东喜山期富碱(钾质)岩带及玉龙含矿岩体形成的构造环境、岩浆来源及岩体的属性看法不一, 主要有: (1) 印度板块与亚洲板块碰撞后, 软流圈对流循环导致岩石圈减薄, 软流圈上拱引致岩石圈地幔融熔形成[34]; (2) 古近纪以来陆内俯冲作用导致软流圈上拱引起地幔混合层部分融熔形成[16]; (3)玉龙铜矿带含矿斑岩和俯冲作用有关, 为火山弧型, 成岩物质为壳幔混合物[3–4]; (4) 形成于板内非造山构造背景[6,7,22], 成岩物质来自交代富集地幔[6–7]。对含矿岩体属性也存在不同的认识: 有的认为其属于钙碱性岩石系列[3–5], 有的则认为其属碱性岩[6,7,22,26]。Hou.提出玉龙含矿斑岩有三个活动期, 与走滑断裂有关[26]。陈文明提出玉龙含矿斑岩体及其中的斑晶并非岩浆直接结晶的产物, 而是深源的富碱硅热水流体交代、熔融上部地壳含铜岩石形成的[24]。过去对玉龙斑岩铜矿带的工作多主要集中在玉龙超大型斑岩铜矿床及多霞松多大型斑岩矿床上, 而对其他斑岩矿床的工作则较少。
扎拉尕斑岩体位于玉龙斑岩铜矿带北部(图1), 前人曾对扎拉尕赋矿斑岩体作过3个岩石样品钾长石和1个岩石样品黑云母K-Ar测年, 所得的年龄变化较大, 在33.9~41.0 Ma之间[1,5,6]。为了深入分析藏东玉龙斑岩铜带时空分布特征及成矿演化, 很有必要对玉龙矿带一些中型规模矿床成矿岩体作精确的同位素定年。为此, 本文以扎拉尕含矿岩体为主要对象, 开展含矿岩体锆石LA-ICP-MS U-Pb年代学研究并分析其形成背景。
图1 藏东玉龙斑岩铜矿带(a)及扎那尕斑岩铜钼矿床地简图(b) (据文献[4–5]修改)
1–下二叠统火山岩; 2–上三叠统砂岩; 3–岩脉; 4–扎拉尕矿化斑岩; 5–地质界线; 6–断层。
扎拉尕斑岩铜钼矿床位于西藏东部玉龙斑岩铜矿带北部玉龙斑岩铜矿床南侧(图1), 含矿岩体侵入下二叠统火山岩和上三叠统砂泥岩中, 地表出露面积约0.6 km2。岩体的空间形态为岩株, 产状陡立[5]。
扎拉尕斑岩铜钼矿床含矿岩体具多阶段活动特征, 张玉泉等[6–7]据在ZK3孔348.8 m和ZK4孔68 m见到正长花岗斑岩和二长花岗斑岩的侵入接触关系而把岩体分为早晚两阶段: 早阶段为二长花岗斑岩, 晚阶段为正长花岗斑岩。扎拉尕含矿斑岩斑晶主要为钾长石、斜长石、石英及云母和少量角闪石, 斑晶矿物粒度主要在0.31~3.0 mm之间, 基质为显晶质, 基质矿物组成和斑晶的矿物组成相似。扎拉尕早阶段及晚阶段斑岩都发生了蚀变及矿化, 蚀变由内向外可分为钾硅化带、黄铁绢英岩化带、黏土化带及青磐岩化带[4–5]。钾化带主要分布于岩体内, 黄铁绢英岩化带主要分布于岩体内外接触带, 其余2个蚀变带以接触带为中心依次向外展布, 各蚀变带之间呈渐变过渡关系[4–5]。铜钼矿化主要发育于钾硅化带和黄铁绢英岩化带叠加部位。Cu含量在垂向变化上变化不大, Mo则有由上往下增强的趋势[4–5]。
扎拉尕斑岩矿床为中型矿床, 其Cu金属量为0.3 Mt, Cu平均含量在0.36%左右, Mo含量约为0.03%, Au约0.03 μg/g[27]。矿化主要为细脉浸染状发育于岩体和接触带围岩中, 矿化体为柱状, 钻孔未穿透矿化岩体, 控制矿化厚度约540 m, 直径约200 m[5]。主要金属矿物黄铜矿、辉钼矿、黄铁矿、磁铁矿、辉铜矿等, 偶见方铅矿、闪锌矿等。
两个锆石LA-ICP-MS U-Pb定年样品分选自岩芯, 早阶段二长花岗斑岩采自ZK3孔345.3 m处, 晚阶段正长花岗斑岩采自ZK4孔200 m处(图1)。样品经碎样、磁选及重液选等选出锆石, 镜下挑选纯后装入环氧树脂靶中并打磨抛光至锆石内部结构充分暴露。根据光学显微镜透反射特征和扫描电镜阴极发光(CL)照片综合选出晶形较好, 没裂纹及包裹体不发育的锆石颗粒对其进行LA-ICP-MS U-Pb年代学测试。锆石定年在澳大利亚国立大学地球科学研究院ICP-MS实验室完成, 分析流程见文献[35]。为了减少继承铅、铅丢失等对年龄的影响, 在207Pb/235U-206Pb/238U图中和谐度低于95%的年龄数据点在统计年龄时将被剔除。
扎拉尕斑岩铜钼矿床赋矿岩体早阶段二长花岗斑岩和晚阶段正长花岗斑岩锆石U-Pb同位素组成特征见表1及表2, 扎拉尕赋矿斑岩矿床早阶段二长花岗斑岩锆石LA-ICP-MS U-Pb年龄比较集中, 分布在37.4~39.6 Ma之间, Th/U在0.28~1.26之间; 晚阶段正长花岗斑岩锆石LA-ICP-MS U-Pb年龄主要分布在至37.6~39.0 Ma之间, Th/U在0.32~0.79之间。
扎拉尕赋矿斑岩体锆石CL图韵律环带发育(图2), 具岩浆锆石的一般特征, 此外, 扎拉尕斑岩锆石Th/U比值较大, 在0.28~1.26之间, 也具岩浆锆石的特征。因此, 可以认为分析锆石为岩浆结晶作用过程中形成的锆石, 锆石U-Pb主群年龄代表岩浆侵位年龄。LA-ICP-MS U-Pb测年具有快速及相对较经济的优点, 为了获得较精确的年龄值, 我们分析较多锆石颗粒, 然后用累积概率统计图分析锆石年龄分布特征。正态分布数据在累积概率统计图上呈一条斜率为正值的直线分布, 落在直线沿伸方向上方的较大年龄被解释为继承锆石年龄, 而分布在直线沿伸方向下方的年龄被解释为铅丢失锆石年龄。在累积概率统计图上呈线性分布的年龄代表锆石主群年龄[29,35]。
图2 扎拉尕斑岩铜钼矿床赋矿岩体锆石CL图
表1 扎拉尕斑岩早阶段二长花岗斑岩锆石LA-ICP-MS U-Pb年龄
我们对扎拉尕早阶段二长花岗斑岩共做了31点锆石U-Pb同位素组成分析, 所有分析点在207Pb/235U-206Pb/238U图中和谐度都高于95%, 因此, 所有的分析点数据都符合计算年龄要求。31个分析点数据在累积概率统计图中为直线分布(图3a, 内插), 其统计年龄代表主群年龄。这31个分析点得出的统计年龄值为(38.5 ±0.2) Ma, MSWD = 1.12, 因此, 扎拉尕早阶段二长花岗斑岩是在(38.5±0.2) Ma侵位形成的。
在扎拉尕晚阶段正长花岗斑岩锆石29个分析点中, 1个分析点在207Pb/235U-206Pb/238U图中和谐度小于95%, 其余28个分析点谐度大于95%, 因此, 1个分析点在计算年龄时被剔除(表2)。其余28个分析点数据在累积概率统计图中为直线分布(图3b, 内插), 其统计年龄代表主群年龄。扎拉尕晚阶段正长花岗斑岩锆石28个分析点U-Pb统计年龄值为(38.5±0.2) Ma, MSWD = 1.08, 因此, 扎那尕晚阶正长花岗斑岩是在(38.5±0.2) Ma侵位形成的。
表2 扎拉尕斑岩晚阶段正长花岗斑岩锆石LA-ICP-MS U-Pb年龄
注: (1) 141-14号分析点因和谐度低于95%而剔除。
虽然在钻孔中见到早阶段二长花岗斑岩与晚阶段正长花岗斑岩呈侵入接触关系[6–7], 但我们的分析结果表明, 扎拉尕赋矿斑岩早阶段二长花岗斑岩和晚阶段正长花岗斑岩锆石LA-ICP-MS U-Pb年龄却一致。这表明扎拉尕早阶段二长花岗斑岩和阶段正长花岗斑岩是在很短时间隔间内形成的, 目前同位素定年精度难以区分早晚两阶段岩浆侵位时代的差异, 扎那尕赋矿斑岩形成时代为(38.5±0.2) Ma。
我们获得扎拉尕赋矿斑岩体锆石LA-ICP-MS U-Pb年龄((38.5±0.2) Ma)和前人钾长石和黑云母K-Ar年龄(33.9~41.0 Ma)[1,5,6]明显不同。我们认为两种同位素体系所得的同位素年龄不同, 主要原因是两种同位素体系抗后期地质热事件干扰能力不同。钾长石或黑云母K-Ar同位素体系封闭温度较低, 在300 ℃左右[36], 易受后期地质事件干扰。如前所述, 扎拉尕岩体发生了温度多大于300 ℃的钾化及硅化[32], 岩体中的钾长石和黑云母K-Ar同位素封闭体系会在岩体发生钾硅化蚀变时受到干扰, 发生放射性成因Ar的增加或丢失, 导致K-Ar同位素年龄发生变化而不能精确反映岩体形成年龄; 而锆石U-Pb同位素系统封闭温度在800 ℃左右[36], 抗后期干忧能力强, 后期钾硅化及其他地质热事件一般不会破坏锆石U-Pb同位素封闭系统, 因此, 扎拉尕赋矿斑岩锆石LA-ICP-MS U-Pb法年龄能更精确地反映岩体形成年龄。
印度板块与欧亚板块在约65 Ma左右时发生的陆陆碰撞在藏东地区形成了红河-哀牢山巨型左旋走滑断裂[37–38]。沿红河-哀牢山巨型左旋走滑断裂系统及其北延断裂发育一系列新生代钾质碱性岩及和钾质碱性岩相关的斑岩型铜钼(金)矿床, 形成三江新生代与钾质碱性岩有关的成矿带。玉龙斑岩铜矿带位于红河-哀牢山巨型断裂带北延断裂系统中[39]。目前对三江新生代钾质碱性岩成矿带形成动力学背景有不同的看法, Chung.[34]提出藏东新生代钾质碱性岩与藏东地区40 Ma 左右发生的地幔对流导致岩石圈减薄有关; 张玉泉等[40]提出哀牢山-金沙江新生代富碱侵入岩形成于裂谷构造背景; Wang.[39]提出哀牢山-红河始新世至渐新世富碱侵入岩和沿着红河-哀牢山深大走滑深大断裂活动产生的局部俯冲有关。
图3 扎拉尕斑岩铜钼矿床含矿岩体锆石LA-ICP-MS U-Pb年龄(内插图为累积概率统计图)
红河-哀牢山走滑断裂带两侧晚三叠纪到始新世陆相红层发生褶皱及沿红河-在哀牢山断裂及其北延断裂发育一系列始新世至早渐新世扭压盆地[41], 表明红河-哀牢山走滑断裂系统在始新世至早中新世处于扭压构造背景[32,39]。红河-哀牢山巨型左行走滑断裂带水平错距(700±200) km, 切穿岩石圈地幔[37–38]。切穿岩石圈地幔断裂活动引起软流圈上涌, 从而会导致岩石圈地幔部分熔融[38]。
玉龙斑岩铜矿带主要赋矿岩体微量元素及Sr-Nd-Pb同位素组成特征[40]和沿红河-哀牢山巨型左行走滑断裂分布的铁镁质至硅铝质钾质碱性岩的相似[38,41–43], 都具交代富集地幔源区的地球化学特征[33,42,44,45], 显示它们具相似的形成机制。前人成果表明, 沿着红河-哀牢山左行走滑深大断裂活动带分布的铁镁质至硅铝质钾质碱性岩与该深大断裂左行走滑活产生的局部俯冲有关[39]。玉龙斑岩铜矿带位于红河-哀牢山左行走滑深大断裂北延断裂系统, 而玉龙斑岩铜矿带从北西往南东五个主要赋矿岩体从玉龙(锆石U-Pb年龄(41.3±0.2) Ma[12])、扎拉尕(锆石U-Pb年龄(38.5±0.2) Ma)、莽总(锆石U-Pb年龄(37.6±0.2) Ma[26])、多霞松多(锆石U-Pb年龄(37.5± 0.2) Ma[30])至马拉松多(锆石U-Pb年龄(36.9±0.6) Ma[13])年龄逐渐降低, 显示出左行断裂构造控制的特征。因此, 有理由认为玉龙斑岩铜矿带赋矿岩体的形成与印度板块与欧亚板块在65 Ma左右时发生的陆陆碰撞, 在藏东三江地区产生切穿岩石圈地幔的红河-哀牢山左行走滑断裂及其北延断裂系统活动, 产生局部俯冲, 诱发地幔上涌, 发生强烈壳幔物质交换及引发的岩浆活动有关, 玉龙斑岩铜矿带形成于陆陆碰撞走滑构造背景。
(1) 扎拉尕铜钼矿赋矿斑岩体主要由早阶段二长花斑岩斑和晚阶段正长花岗斑岩组成, 早阶段二长花岗斑岩锆石LA-ICP-MS U-Pb和晚阶段长花岗斑岩锆石LA-ICP-MS U-Pb年龄相同, 都是(38.5± 0.2) Ma。扎拉尕斑岩早晚两阶段岩体是成矿岩浆在很短时间隔间内侵位形成的。
(2) 玉龙斑岩铜矿带斑岩铜钼矿床与陆陆碰撞形成的走滑深大断裂诱发的壳幔相互作用有关, 玉龙斑岩铜矿带形成于陆陆碰撞走滑构造背景。
野外工作期间西藏地质矿产局第一地质大队给予了大力协助; 澳大利亚国立大学地球科学研究院ICP-MS实验室在实验工作中给予了大力支持, 特此致谢!
[1] 刘荣谟, 赵定华. 西藏东部中酸性侵入岩同位素年龄讨论[J]. 地质论评, 1981, 27(4): 326–332. Liu Rong-mo, Zhao Ding-hua. Discussion on isotopic ages of acid intrusions in the eastern Tibet [J]. Geol Rev, 1981, 27(4): 323–332 (in Chinese with English abstract).
[2] 芮宗瑶, 黄崇轲, 齐国明. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 1984: 1–300. Rui Zong-yao, Huang Chong-ke, Qi Guo-ming. Porphyry Copper (Molybdenum) Deposits in China [M]. Beijing: Geological Publishing House, 1984: 1–350 (in Chinese).
[3] 马鸿文. 论藏东玉龙斑岩铜矿带岩浆侵入时代[J]. 地球化学, 1989, 18(3): 210–216. Ma Hong-wen. Discussion on the intrusion age of the Yulong ore bearing porphyries [J]. Geochimica, 1989, 18(3): 210–216 (in Chinese with English abstract).
[4] 马鸿文. 西藏玉龙斑岩铜矿带花岗岩类与成矿[M]. 武汉: 中国地质大学出版社, 1990: 1–158. Ma Hong-wen. Granitoid and Mineralization of the Yulong Porphyry Copper Belt in Eastern Tibet [M]. Wuhan: China University of Geosciences Press, 1990: 1–158 (in Chinese with English abstract).
[5] 唐仁鲤, 罗怀松. 西藏玉龙斑岩铜(钼)矿带地质[M]. 北京: 地质出版社, 1995: 1–310. Tang Ren-li, Luo Huai-song. The Geology of Yulong Porphyry Copper (Molybdenum) Ore Belt, Xizang (Tibet) [M]. Beijing: Geological Publishing House, 1995: 1–320 (in Chinese with English abstract).
[6] 张玉泉, 谢应雯, 梁华英, 邱华宁, 李献华, 钟孙霖. 藏东玉龙铜矿带含矿斑岩演化与矿矿关系[J]. 西藏地质, 1997 (2): 74–86. Zhang Yu-quan, Xie Ying-wen, Liang Hua-ying, Qiu Hua-ning, Li Xian-hua, Chung Sun-lin. Evolution of ore-bearing porphyry and its relation to mineralization in the Yulong porphyry copper zone, East Xizang [J]. Xizang Geol, 1997 (2): 74–86 (in Chinese).
[7] 张玉泉, 谢应雯, 梁华英, 邱华宁, 李献华, 钟孙霖. 藏东玉龙铜矿带含矿斑岩及成岩系列[J]. 地球化学, 1998, 27(3): 236–243. Zhang Yu-quan, Xie Ying-wen, Liang Hua-ying, Qiu Hua-ning, Li Xian-hua, Chung Sun-lin. Petrolgenesis series and the ore-bearing porphryies of the Yulong ore belt in eastern Tibet [J]. Geochimica. 1998, 27(3): 236–243 (in Chinese with English abstract).
[8] 王登红, 屈文俊, 李志伟, 应汉龙, 陈毓川. 金沙江-红河成矿带斑岩铜钼矿的成矿集中期: Re-Os同位素定年[J]. 中国科学(D辑), 2004, 34(4): 345–349.Wang Denghong, Qu Wenjun, Li Zhiwei, Ying Hanlong, Chen Yuchuan. Mineralization episode of porphyry copper deposits in the Jinshajiang-Red River mineralization belt: Re-Os dating [J]. Sci China (D), 2004, 34(4): 345–349 (in Chinese).
[9] 王登红, 陈毓川, 徐珏. 中国新生代成矿作用[M]. 北京: 地质出版社, 2005: 1–441.Wang Deng-hong, Chen Yu-chuan, Xu Yu. Cenozoic Metallogenesis in China [M]. Beijing: Geological Publishing House, 2005: 1–141 (in Chinese).
[10] 王登红, 应汉龙, 梁华英, 黄智龙, 骆耀南. 西南三江地区新生代大陆动力学过程与大规模成矿[M]. 北京: 地质出版社, 2006: 1–208. Wang Deng-hong, Ying Han-long, Liang Hua-ying, Huang Zhi-long, Luo Yao-nan. Geodynamic Processes and Large Scale Mineralization [M]. Beijing: Geological Publishing House, 2006: 1–208 (in Chinese).
[11] 梁华英, 谢应雯, 张玉泉. 富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例[J]. 自然科学进展, 2004, 14(1): 116–120. Liang Hua-ying, Xie Ying-wen, Zhang Yu-quan. Zircon age and geochemical evolution of the Machangqing complex associated with copper mineralization [J]. Prog Nat Sci, 2004, 14(1): 116–120 (in Chinese with English abstract).
[12] 梁华英, 莫济海, 孙卫东, 喻亨祥, 张玉泉, Allen C M. 藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析[J]. 岩石学报, 2008, 24(10): 2352–2358. Liang Hua-ying, Mo Ji-hai, Sun Wei-dong, Yu Heng-xiang, Zhang Yu-quan, Allen C M. Study on the duration of the ore-forming system of the Yulong giant porphyry copper deposit in eastern Tibet [J]. Acta Petrol Sin, 2008, 24(10): 2352–2358 (in Chinese with English abstract).
[13] 梁华英, 莫济海, 孙卫东, 张玉泉, 曾提, 胡光黔, Allen C M. 玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析[J]. 岩石学报, 2009, 25(2): 385–392. Liang Hua-ying, Mo Ji-hai, Sun Wei-dong, Zhang Yu-quan, Zeng Ti, Hu Guang-qian, Allen C M. Study on geochemical composition and isotpe age of the Malasongduo porphyry associated with Cu-Mo mineralization [J]. Acta Petrol Sin, 2009, 25(2): 385–392 (in Chinese with English abstract).
[14] 谢玉玲, 侯增谦, 徐九华, 杨志明, 徐文艺, 何建平. 藏东玉龙斑岩铜矿床多期流体演化与成矿流体包裹体证据[J]. 岩石学报, 2005, 21(5): 1409–1415. Xie Yu-ling, Hou Zeng-qian, Xu Jiu-hua, Yang Zhi-ming, Xu Wen-yi, He Jian-ping. Evolution of multi-stage ore-forming fluid and mineralization: Evidence form fluid inclusions in Yulong porphyry copper deposit, east Tibet [J]. Acta Petrol Sin, 2005, 21(5): 1409–1415 (in Chinese with English abstract).
[15] 毕献武, 胡瑞忠, 彭建堂, 吴开兴, 苏文超, 战新志. 姚安和马厂箐富碱侵入岩体的地球化学特征[J]. 岩石学报, 2005, 21(1): 113–124.Bi Xian-wu, Hu Rui-zhong, Peng Jian-tang, Wu Kai-xing, Su Wen-chao, Zhan Xin-zhi. Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions [J]. Acta Petrol Sin, 2005, 21(1): 113–124 (in Chinese with English abstract).
[16] Deng Wanming, Huang Xuan, Zhong Dalai. Alkali-rich porphyry and its relation with intraplate deformation of north part of Jinsha River belt in western Yunnan, China [J]. Sci China (D), 1998, 41(3): 297–215.
[17] 姜耀辉, 蒋少涌, 凌洪飞, 戴宝章. 陆-陆碰撞造山环境下含铜斑岩岩石成因: 以藏东玉龙斑岩铜矿带为例[J]. 岩石学报, 2006, 22(3): 697–706.Jiang Yao-hui, Jiang Shao-yong, Ling Hong-fei, Dai Bao-zhang. Petrogenesis of Cu-bearing porphyries associated with continent-continent collision setting: Evidence from the Yulong porphyry Cu ore-belt, east Tibet [J]. Acta Petrol Sinica, 2006, 22(3): 697–706 (in Chinese with English abstract).
[18] 姜耀辉, 蒋少涌, 戴宝章, 凌洪飞. 玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究[J]. 岩石学报, 2006, 22(10): 2561–2566.Jiang Yao-hui, Jiang Shao-yong, Dai Bao-zhang, Ling Hong-fei. Comparison on elemental and isotopic geochemistry of ore-bearing and barren porphyries from the Yulong porphyry Cu deposit, east Tibet [J]. Acta Petrol Sin, 2006, 22(10): 2561–2566 (in Chinese with English abstract).
[19] 郭利果, 刘玉平, 徐伟, 张兴春, 秦克章, 李铁胜, 石玉若. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约[J]. 岩石学报, 2006, 22(4): 1009–1016. Guo Li-guo, Liu Yu-ping, Xu Wei, Zhang Xing-chun, Qin Ke-zhang, Li Tie-sheng, Shi Yu-ruo. Constraints to the mineralization age of the Yulong porphyry copper deposit from SHRIMP U-Pb zircon data in Tibet [J]. Acta Petrol Sin, 2006, 22(4): 100–106 (in Chinese with English abstract).
[20] 曾普胜, 侯增谦, 高永峰, 杜安道. 印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用[J]. 地质论评, 2006, 52(1): 72–84. Zeng Pu-sheng, Hou Zeng-qian, Gao Yong-feng, Du An-dao. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite [J]. Geol Rev, 2006, 52(1): 72–84 (in Chinese with English abstract).
[21] 侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4): 337–358. Hou Zeng-qian, Yang Zhu-sen, Xu Wen-yi, Mo Xuan-xue, Ding Lin, Gao Yong-feng, Dong Fang-liu, Li Guang-ming, Qu Xiao-ming, Li Guang-ming, Zhao Zhi-dan, Jiang Si-hong, Meng Xiang-jin, Li Zhen-qing, Qin Ke-zhang, Yang Zhi-ming. Metallogenesis in Tibetan collisional orogenic belt: Ⅰ. Mineralization in main collisional orogenic setting [J]. Mineral Deposit, 2006, 25(4): 337–358 (in Chinese with English abstract).
[22] 吕伯西, 王增, 张能德. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社, 1993: 71–151. Lu Bo-xi, Wang Zeng, Zhang Neng-de. Granitic Rocks and Their Metallogenic Specialization in the Sanjiang Area, China [M]. Beijing: Geological Publishing House, 1993: 71–151 (in Chinese with English abstract).
[23] 黄波, 梁华英, 莫济海, 谢应雯. 金平铜厂铜钼矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄及意义[J]. 大地构造与成矿学, 2009, 33(4): 599–604. Huang Bo, Liang Hua-ying, Mo Ji-hai, Xie Ying-wen. Zircon LA-ICP-MS age of the Jinping Tongchang porphyry associated with Cu-Mo mineralization and its geological implication [J]. Geotecton Metallogen, 2009, 33(4): 599–604 (in Chinese with English abstract).
[24] 陈文明. 深源富碱硅热流体与斑岩铜矿含矿斑岩体的成因联系及流体包裹体、斑晶结构证据[J]. 地学前缘, 2001, 8(4): 409–421. Chen, Wen-ming. Genetic relation between deep-seated alkalirich hydrothermal fluids and ore-bearing porphyries of porphyry copper deposits — Evidence from fluid inclusions and phenocryst textures [J]. Earth Sci Front, 2001, 8(4): 409-412 (in Chinese with English abstract).
[25] 伍静, 梁华英, 莫济海, 张玉泉, 胡光黔. 玉龙斑岩铜矿带莽总含矿斑岩体岩石学特征及锆石U-Pb年龄研究[J]. 大地构造与成矿学, 2011, 35(2): 300–306. Wu Jing, Liang Hua-ying, Mo Ji-hai, Zhang Yu-quan, Hu Guang-qian. Petrochemistry and zircon LA-ICP-MS age of the Mangzong porphyry associated with Cu-Mo mineralization in the Yulong ore belt [J]. Geotecton Metallogien, 2011, 35(2): 300–306 (in Chinese with English abstract).
[26] Hou Zengqian, Ma Hongwen, Khin Z, Zhang Yuquan, Wang Mingjie, Wang Zeng, Pan Guitang, Tang Renli. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet [J]. Econ Geol, 2003, 98(1): 125–145.
[27] Hou Zengqian, Xie Yuling, Xu Wenyi, Li Yingqing, Khin Z, Beaudoin G, Rui Zongyao, Huang Wei, Ciren L. Yulong deposit, eastern Tibet: A high-sulfidation Cu-Au porphyry copper deposit in the eastern Indo-Asian collision zone [J]. Int Geol Rev, 2007, 49(3): 235–258.
[28] Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhenqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen [J]. Ore Geol Rev, 2009, 36(1–3): 25–51.
[29] Liang Huaying, Campbell I H, Allen C M, Sun Weidong, Liu Congqiang, Yu Hengxiang, Xie Yingwen, Zhang Yuquan. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet [J]. Mineral Deposit, 2006, 41(2): 152–159.
[30] Liang Huaying, Campbell I H, Allen C M, Sun Weidong, Yu Hengxiang, Xie Yingwen, Zhang Yuquan. The age of the potassic alkaline rocks along the Ailao Shan-Red River shear zone: Implications for the onset age of left-lateral shearing [J]. J Geol, 2007, 115(2): 231–242.
[31] Liang Huaying, Sun Weidong, Su Wenchao, Zartman R E. Porphyry copper-gold mineralization promoted by redox fluctuation during magnetite alteration [J]. Econ Geol, 2009, 104(4): 587–596.
[32] Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, Dai Baozhang. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints [J]. Earth Planet Sci Lett, 2006, 241(3/4): 617–633.
[33] Sun Weidong, Linag Huaying, Ling Mingxing, Ireland T R, Wei Qirong, Fan Weiming. The link between reduced porphyry copper deposits and oxidized magmas [J]. Geochim Cosmochim Acta, 2013, 103(1): 263–275.
[34] Chung Sunlin, Lo Chinghua, Lee Tungyi, Zhang Yuquan, Xie Yingwen, Li Xianhua, Wang Kuolung, Wang Peiling. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago [J]. Nature, 1998, 394(6695): 769–773.
[35] Harris A C, Allen C M, Holcombe R J, Campbell I H, Bryan SE and Palin JM. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: Implications for porphyry-related mineralization [J]. Mineral Deposit, 2004, 39(1): 46–67.
[36] Harris N. Radiogenic isotopes and the interpretation of granitic rocks [J]. Episodes, 1996, 19(4): 107–113
[37] Leloup P H, Lacassin R, Tappponnier P, Scharer U, Zhong Dalai, Liu Xiaohan, Zhang Liangshang, Ji Shaocheng, Trinh P T. The Ailao Shan-Red River shear zone (Yunnan, China): Tertiary transform boundary of Indochina [J]. Tectonophysics, 1995, 251(1–4): 3–84.
[38] Leloup, P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trong T T P, Replumaz A, Tapponnier P. New constraints on the structure, thermochronology, and timing of the Ailao Shan–Red River shear zone, SE Asia [J]. J Geophys Res, 2001, 106(B4): 6683–6732.
[39] Wang Jianghai, Yin An, Harrison T M, Grove M, Zhang Yuquan, Xie Guanghong. A tectonic model for Cenozoic gingeous activities in the eastern Indo-Asian collision zone [J]. Earth Planet Sci Lett, 2001, 188(1/2): 123–133.
[40] 张玉泉, 谢应雯, 李献华, 邱华宁, 赵振华, 梁华英. 青藏高原东部钾玄岩浆岩同位素特征: 岩石成因及构造意义[J]. 中国科学(D辑), 2000, 30(5): 493–498.Zhang Yuquan, Xie Yingwen, Li Xianhua, Qiu Huaning, Zhao Zhenhua, Liang Huaying. Isotope characteristics of shoshonitic rocks in eastern Tibet: Petrogenesis and its structural implication [J]. Sci China (D), 2000, 30(5): 493–498 (in Chinese).
[41] 潘桂棠, 王培生, 徐耀荣, 焦淑沛, 向天秀. 青藏高原新生代构造演化[M]. 北京: 地质出版社, 1990, 1–243. Pan Gui-tang, Wang Pei-sheng, Xu Yao-rong, Jiao Shu-pei, Xiang Tian-xiu. Tectonic Evolution of the Qinghai-Tibet Plateau [M]. Beijing: Geological Publishing House, 1990: 1–243 (in Chinese with English abstract).
[42] Schaerer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: The Red River belt, China [J]. Earth Planet Sci Lett, 1994, 126(2): 379–397.
[43] Zhang L S, Schaerer U. Age and origin of magmatism along the Cenozoic Red River shear belt [J]. Contrib Mineral Petrol, 1999, 134(1): 65–78.
[44] 朱炳泉, 张玉泉, 谢应雯. 滇西洱海东第三纪超K质火成岩系的Nd-Sr-Pb同位素特征与西南大陆地幔演化[J]. 地球化学, 1992, 21(3): 201–212. Zhu Bing-quan, Zhang Yu-quan, Xie Ying-wen. Nd, Sr and Pb isotopic characteristics of Cenozoic ultra-potassic volcanic rocks from eastern Erhai, Yunnan and their implications for subcontinent-mantle evolution in southwestern China [J]. Geochimica, 1992, 21(3): 201–212 (in Chinese with English abstract).
[45] 谢应雯, 张玉泉, 钟孙霖, 李献华. 云南洱海东部新生代高钾碱性岩浆岩痕量元素特征[J]. 岩石学报, 1999, 15(1): 75–82.Xie Ying-wen, Zhang Yu-quan, Chung Sun-lin, Li Xian-hua. Trace element characteristics of Cenozoic high potassic igneous rocks from eastern Erhai, Yunnan Province [J]. Acta Petrol Sin, 1999, 15(1): 75–82 (in Chinese with English abstract).
Zircon LA-ICP-MS U-Pb age of the Zalaga porphyry associated with Cu-Mo mineralization in the Yulong ore belt and its geological implication
HE Guo-chao1,2, WANG Guang-qiang2,3, HUANG Wen-ting2,3, ZOU Yin-qiao2,3, WU Jing2*, LIANG Hua-ying2, ZHANG Yu-quan2and Charllote M ALLEN4
1. Resource Exploration Co. Ltd of Guangxi Non-Ferrous Metal Group Co., Ltd, Nanning 530022, China; 2. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Research School of Earth Sciences, Australian National University, Canberra ACT0200, Australia
The Zalaga porphyry Cu-Mo deposit is located at the northern domain of the Yulong porphyry copper ore belt in the eastern Tibet. The porphyry emplaced into the lower Permian volcanic rock and Late Triassic sandstone and could be divided into early stage monzonite granite porphyry and late stage syenogranite porphyry. Both stages of the porphyry were dated, respectively, using zircon LA-ICP-MS U-Pb method. The early stage monzonite granite porphyry has zircon LA-ICP-MS U-Pb age of (38.5±0.2) Ma, MSWD=1.12 and the late stage syenogranite porphyry has zircon LA-ICP-MS U-Pb age of (38.5±0.2) Ma, MSWD=1.08. The early porphyry has the same zircon LA-ICP-MS U-Pb age as that of the late stage porphyry, suggesting that the early porphyry and late stage porphyry emplaced almost at the same time and that the Zalaga porphyry was emplaced during the Late Eocene. Based on the structural condition of the period during Eocene to Oligocene in eastern Tibet, it is concluded that the Zalaga porphyry Cu-Mo(Au) deposit and the Yulong porphyry copper ore belt has genetic relation to the activities of strike-slip fault zone which transverses the lithosphere mantle and triggered the magmatic activities caused by the collision between Indian and Asia continents.
porphyry Cu-Mo deposit; age of porphyry and associated mineralization; continental collision and mineralization; Eastern Tibet
P597
A
0379-1726(2014)04-0399-09
2013-04-08;
2013-12-09;
2013-12-23
中国科学院战略性先导科技专项(B类) (XDB03010302); 国家自然科学基金(41272099, 41121002)
何国朝(1964–), 男, 教授级高级工程师, 主要从事矿产地质及勘查工作。E-mail: 124737253@qq.com
WU Jing, E-mail: wujing7808@163.com, Tel: +86-20-85290107