程洋 杨艳岭
摘 要:通信网络技术及计算机技术的快速发展,云计算的概念得以提出,并在各个领域中得到了广泛的应用,随着云计算技术的发展,在电信网络关系分析技术中也应用了云计算,本文就对云计算的发展现状进行分析,并简单分析了其在客户价值预测、好友推荐、社团特征结构化存储等电信通信网络关系分析中的应用。
关键词:云计算;电信通信网络;关系分析;应用
1 云计算的简介
如果站在技术的角度对云计算进行分析,可以将其看作是一种基础性的设施,其主要的架构构成是在其上搭建多个的框架,云计算的概念可以通过分层模式进行体现,其具有虚拟化的物理硬件层,能够为整个系统提供一个非常灵活的自适应平台,为了能够在各个层次上都能对其业务需求进行良好的响应,云计算可以给予SaaS平台、PaaS平台、IaaS平台来进行计算。
2 云计算的发展现状
目前在云计算的研究及应用过程中,赛门铁克、Redhat、SUN、Oracle、微软、IBM等主流的软硬件生产商都在进行云计算的相关研究,并提出了具有自身特点的云计算体系及架构,并且投入了大量的资金及技术来进行云计算的研究,各个厂家所提出的云计算的架构虽然有一定的差异,但是总体上的概念没有太大的区别,但是各个厂家对于云计算的概念理解及研究视角却有着较大的差别。另一方面,虽然云计算经过了一段时间的发展,取得了较大的进步,但是在其主要的技术应用中,还存在着一些有待解决的问题,例如多个虚拟机的功能融合、QoS问题、云环境下的安全问题等。
3 云计算在电信通信网络关系分析中的应用
3.1 基于云计算的客户价值预测
在电信通信网络中的客户价值预测工作中,通常涉及的知识面非常的广,需要进行大量的计算,而如果将云计算应用于客户价值预测中,对用户信息及通话信息的相关数据进行深层次的挖掘,应用分位点的概念,对新入网的用户进行有效的价值预测,该种预测方法与传统的绝对区间划分的预测方法,能够有效的降低预测误差。
其主要的预测流程为:将客户信息及通话记录中的有效字段进行抽取,然后将相应的字段进行合并连接;然后对用户的所在区域、年龄、性别等进行解析,解析完成之后将不符合筛选要求的用户予以剔除;然后将通话时长作为主要的参考依据,结合分位点,将相关的通话记录进行有效的分类,如果在分类的过程中采用了n-1各分位点,那么可以根据此分位点将所有的用户划分为n类,然后根据类别划分的不同,将n类记录分别进行存储,依据分好类的n个文件的不同类别,分别对其进行bayesian模型的训练,然后还要运用测试集对相关的模型效果进行检查对比。
3.2 基于云计算的好友推荐
在运用云计算进行好友推荐的计算时,主要的参考依据是用户的熟悉度及相似度,这种计算方法在电信通信网络关系中具有非常广泛的应用前景,计算中的绝对量是熟悉度,通过二度好友的贡献度及熟悉度来进行二度好友的查找,通过这种算法能够得到二度好友的相关熟悉度,然后会根据相关的熟悉度对朋友的属性进行加权算法,最终能够得到非常精确的偏好特性,在该种计算方法中,会根据电信数据的特点,提取交流时长、交流频率等信息,通过对二度好友的属性相似度、用户偏好、熟悉度等进行计算,然后可以得到用户之间的总的推荐度,最后把总相似度较高的二度好友推荐给用户,使得好友推荐更加的精确。
其主要的计算流程为:首先对一度好友之间的相似度进行计算,通过对一度好友的熟悉度的计算,能够得到相关的二度好友关系,然后再对其相似度进行计算,并要根据一度好友计算出用户的环境偏好,然后通过用户自身属性、环境偏好及二度好友的熟悉度,计算出总的推荐度,根据总推荐度的高低,为用户进行好友推荐。
3.3 基于云计算的电信社团特征结构化存储及验证
将云计算应用于电信社团特征的结构化存储中,其主要的计算方法是:根据一个月之内的通话记录分析,对其中所存在的社团属性进行统计分析,然后根据社团特征提出一种存储方案,并根据相关的通话网络来进行验证,对社团结构特性的统计分析进行归一化,并将其在相关的结构中进行存储,为进行二次的深入分析提供方便,在进行方案验证时,将社团作为研究单位,对其整体感兴趣的数据的分布情况进行分析,并将其与之前的研究数据进行分析比较,并对不同的特征进行统计。
其主要的计算流程为:首先要对社团中存在的各种属性进行统计,如果存在没有统计的属性,要对其单属性进行统计,然后将其统计特性进行归一化处理,制定出统计特性的概率分布情况,然后将其进行一致化处理,并将其结果存储于上述的存储结构当中。
[参考文献]
[1]童晓渝,张云勇,戴元顺.从公众通信网向公众计算通信网演进[J].电信科学,2010(6).
[2]曹军威,万宇鑫,涂国煜,张树卿,夏艾瑄,刘小非,陈震,陆超.智能电网信息系统体系结构研究[J].计算机学报,2013(1).endprint