郑作虎 王首勇
基于Alpha稳定分布杂波模型的雷达目标检测方法
郑作虎*王首勇
(空军预警学院雷达兵器运用工程重点实验室 武汉 430019)
针对非高斯相关杂波背景下,移动目标检测(MTD)技术的检测性能严重下降的问题,该文基于Alpha稳定分布杂波模型和本征滤波理论,提出一种非高斯相关杂波背景下的雷达目标检测方法。该方法基于Alpha稳定分布杂波模型,通过幂变换抑制杂波的非高斯特性,以及通过分数低阶相关矩阵白化杂波,在此基础上应用本征滤波实现对目标信号的有效积累,可提高信杂比。仿真实验和实测数据验证表明,该方法在非高斯相关杂波背景下的检测性能明显优于MTD方法的性能。
雷达;目标检测;非高斯相关杂波;Alpha稳定分布;幂变换;杂波白化
类似于高斯分布随机过程中的协方差概念,FLOC在非高斯分布随机过程中有着广泛的应用。
设某一距离单元的复包络观测信号为
为了抑制杂波的非高斯特性,本文采用幂变换方法,按式(4)对观测信号矢量进行幂变换
应用Cholesky分解分数低阶相关矩阵
白化处理矩阵为
由式(12)可知,经过白化处理后杂波相关矩阵变换为单位阵。观测信号和目标信号经白化处理后表示为
经幂变换和白化处理后,杂波已逼近于独立高斯分布,考虑雷达目标信号的幅度、相位随机性,本征滤波[14]具有最优的积累性能,因此,本文应用本征滤波对信号进行积累。以输出信杂比最大为准则,根据Rayleigh商的有界性,得到最佳本征滤波器系数。
输出信杂比为
当滤波器系数
基于Alpha稳定分布杂波模型的雷达目标检测方法由上述3部分组成,如图1所示。
实际中目标多普勒频率通常是未知的,因此需采用一个覆盖整个多普勒频率范围的滤波器组进行目标检测,选择其输出最大值作为检测统计量,如图2所示。
图1 基于Alpha稳定分布杂波模型的雷达目标检测示意图
图2 基于Alpha稳定分布杂波模型的雷达目标检测框图
为检验本文方法检测性能,在仿真数据和实测数据条件下,根据不同的模型参数和目标多普勒频率,分别验证了幂变换抑制非高斯特性以及白化处理消除杂波相关性的有效性,并比较分析了本文方法与MTD方法的检测性能。
图3 复相关分布杂波的归一化分数低阶协方差谱密度曲线(50次平均)
图4 幂变换前后杂波的PDF曲线比较
式中为白化滤波器的频率响应。图6给出了白化处理的归一化频率响应幅值曲线(样本数为105的平均曲线,下同),由于白化矩阵是根据杂波分数低阶相关矩阵求出(式(10)),因此,频率响应自适应于杂波的谱特性。图7给出了杂波白化前后归一化功率谱曲线比较,即式(11)中杂波和归一化功率谱曲线,从图7中可以看出,经过白化处理之后,杂波的功率谱基本为直线,相关杂波变换为独立杂波。图8给出了观测信号经白化处理前后的归一化功率谱曲线,即式(13)中和归一化功率谱曲线比较,从图8中可以看出,白化处理较好地消除了杂波的相关性,而信号谱的谱峰始终处于目标多普勒频率处。
图6 白化处理的频率响应幅度谱曲线
图7 杂波白化前后功率谱曲线
图8 观测信号白化前后功率谱曲线
图9 白化处理前后信杂比比较
在非高斯相关杂波背景下,基于MTD技术的雷达目标检测性能严重下降,针对该问题,本文基于Alpha稳定分布杂波模型,应用幂变换抑制杂波非高斯特性,通过Cholesky分解杂波分数低阶相关矩阵得到的白化矩阵消除杂波的相关性,在此基础上应用本征滤波实现对目标信号的有效积累。实验结果表明,在非高斯相关杂波背景下,本文方法的检测性能明显优于MTD方法的性能。
图10 本文方法与MTD方法检测性能比较
图11 #26数据样本的分数低阶谱密度曲线
图12 本文方法与MTD检测性能比较
[1] Sangston K J, Gini F, and Greco M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]., 2012, 48(1): 64-77.
[2] Fiche A, Cexus J C, Khenchaf A,.. Characterization of EM sea clutter with a-stable distribution[C]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 6059-6062.
[3] Antipov I. Statistical analysis of northern Australian coastline sea clutter data[R]. Edinburg: Australia, DSTO Electronics and Surveillance Research Laboratory, 2001.
[4] 杨建宇, 凌太兵, 贺峻. LFMCW雷达运动目标检测与距离速度去耦合[J]. 电子与信息学报, 2004, 26(2): 169-173.
Yang Jian-yu, Ling Tai-bing, and He Jun. MTD and range-velocity Ddcoupling of LFMCW Radar[J]., 2004, 26(2): 169-173.
[5] 刘振, 魏玺章, 黎湘. 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法[J]. 雷达学报, 2012, 1(1): 28-35.
Liu Zhen, Wei Xi-zhang, and Li Xiang. Novel method of unambiguous moving target detection in pulse-doppler radar with random pulse Rrepetition interval[J].,2012, 1(1): 28-35.
[6] Ollila E, Tayler D E, Koivunen V,Compound- Gaussian clutter modeling with an inverse Gaussian texture distribution[J]., 2012, 19(12): 876-879.
[7] 张晓利, 关键, 何友. K分布杂波中分布式目标的Rao检测[J].电子与信息学报, 2010, 32(10): 2496-2500.
Zhang Xiao-li, Guan Jian, and He You. Rao test of distributed targets in K-distributed clutter[J]., 2010, 32(10): 2496-2500.
[8] Conte E and Picci G. Sensitivity study of GLRT detection in compound-Gaussian clutter[J]., 1998, 34(1): 308-316.
[9] Nikias C L and Shao M. Signal Processing With Alpha-stable Distributions and Applications[M]. New York: Wiley, 1995: 2-45.
[10] Yu Gang, Li Chang-ning, and Zhang Jian-feng. A new statistical modeling and detection method for rolling element bearing faults based on alpha-stable distribution[J]., 2013, 41(1/2): 155-175.
[11] Yahong R Z and Vitor H N. Two variable step-size adaptive algorithms for non-Gaussian interference environment using fractionally lower-order moment minimization[J]., 2013, 23(3): 831-844.
[12] You Guo-hong Qiu Tian-shuang, and Song Ai-min. Novel direction findings for cyclostationary signals in impulsive noise environments[J]., 2013, 32(6): 2939-2956.
[13] Ma X Y and Nikias C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]., 1996, 44(11): 2669-2687.
[14] Manolakis D G, Ingle V K, and Kogon S M. Statistical and Adaptive Signal Processing[M]. New York: McGraw-Hill, 2000: 321-325.
[15] Szajnowski W J and Wynne J B. Simulation of dependent samples of symmetric alpha-stable clutter[J]., 2001, 8(5): 151-152.
[16] Swami A. Non-Gaussian mixture models for detection and estimation in heavy-tailed noise [C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 2000: 3802-3805.
[17] 朱晓波, 王首勇, 冯讯. 基于分数低阶本征滤波的雷达目标检测方法[J]. 电波科学学报, 2012, 27(1): 165-171.
Zhu Xiao-bo, Wang Shou-yong, and Feng Xun. Radar target detection method based on fractional lower order eigenfilter [J]., 2012, 27(1): 165-171.
[18] Rembrandt B and Brian C. The McMaster IPIX radar sea clutter database[OL]. http:// soma.ece.mcmaster. ca/ipix/ dartmouth/ datasets.html.2001.
郑作虎: 男,1986年生,博士,研究方向为雷达信号与信息处理.
王首勇: 男,1956年生,教授,博士生导师,研究方向为现代信号处理、雷达信号处理等.
Radar Target Detection Method Based on the Alpha-stable Distribution Clutter Model
Zheng Zuo-hu Wang Shou-yong
(,,430019,)
The detection performance of the Moving Target Detection(MTD) method descends badly in a non-Gaussian correlated clutter background. Therefore, a radar target detection method in the non-Gaussian correlated clutter background is proposed, which is obtained based on the alpha-stable distribution clutter model and the eigenfilter. The proposed method suppresses the non-Gaussian clutter by the signed power and whitens the correlated clutter of the fractional lower order correlate matrix, which is based on the alpha-stable distribution clutter model. Finally, the eigenfilter is used to get a higher signal clutter ratio. Simulations and real data results show that, the detection performance of the proposed method obviously outperforms the MTD method in the non-Gaussian correlated clutter background.
Radar; Target detection; Non-Gaussian correlated clutter; Alpha-stable distribution; Signed power; Clutter whitening
TN957.51
A
1009-5896(2014)12-2963-06
10.3724/SP.J.1146.2014.00072
郑作虎 zhengzuohu@yeah.net
2014-01-10收到,2014-05-29改回
国家自然科学基金 (61179014)资助课题