饶书权, 杜廷福, 许琪
中国医学科学院基础医学研究所, 北京 100005
外显子组测序在人类疾病中的应用
饶书权, 杜廷福, 许琪
中国医学科学院基础医学研究所, 北京 100005
据估计, 约 85%的人类遗传变异集中在蛋白编码区, 因此对全部的蛋白编码区(外显子组)进行重测序,可以快速、有效地鉴定人类疾病遗传变异。以往鉴定孟德尔遗传病的致病基因多采用连锁分析结合候选定位克隆的方法, 不仅耗时长, 而且成功率低。2009年, 科学家第一次应用外显子组测序在4名弗里曼谢尔登综合征(常染色体显性遗传病)中发现了位于MYH3中的点突变, 显示出外显子组测序在孟德尔遗传病致病基因鉴定中的强大功效。就复杂疾病而言, 传统的关联研究, 包括全基因组关联研究(GWAS), 虽然鉴定了大量的常见变异,但对低频变异和罕见变异的检测能力十分有限; 深度测序的发展为解决上述问题提供了良好的契机。文章就外显子组测序在人类疾病中的应用进行了综述。
外显子组测序; 孟德尔遗传疾病; 复杂疾病
医学研究的一个重要领域是探索人类疾病的遗传变异, 从而为疾病的诊断、预防及其治疗提供理论基础[1]。遗传学理论和技术的进步, 极大地丰富了遗传学知识, 越来越多的遗传变异被陆续鉴定出来。近几十年来, 连锁分析(Linkage analysis)和关联研究(Association study), 包括候选基因关联研究(Candidate gene association study)和全基因组关联研究(Genome-wide association study, GWAS)分别在鉴定孟德尔遗传病的致病基因及复杂疾病的易感基因中发挥了重要作用。连锁分析的基本思想为:根据疾病在家系中特有的遗传模式, 利用遗传标记, 如短串联重复序列(Short tandem repeats, STR)和单核苷酸多态性(Single nucleotide polymorphism, SNP),将致病基因定位在染色体上的某一小段区域; 然后利用测序技术来寻找该区域内的致病变异。通过连锁分析, 已成功鉴定约 1/3的孟德尔遗传病的致病基因[2]。然而, 对于家系成员过少(或不齐全)、致病基因外显率过低或位点异质性高的孟德尔遗传病,连锁分析的效能则会明显减弱[3]。
迄今, 通过候选基因关联研究和全基因组关联研究, 科研人员已鉴定出众多复杂疾病, 包括精神分裂症[4,5]、肿瘤[6]等的易感位点。然而, 所有已经揭示的易感位点只能解释疾病的一小部分遗传度[7,8]。此外, 随着易感位点的最小等位基因频率(Minor allele frequency, MAF)逐渐下降, 关联研究达到足够检验效能所需的样本含量往往呈指数级增长[8,9], 因此通过关联研究鉴定得到的位点多为致病效力微弱的常见变异(MAF>0.05), 而对低频变异(MAF<0.05)和罕见变异(MAF<0.01)的检测能力十分有限[8]。
自2005年以来, 二代测序技术得到了极大的改善, 测序成本大幅度降低。研究人员逐渐开始通过对人类基因组进行重测序来寻找疾病的易感基因[10]。人类基因组大约含180 000个外显子, 总长约30 Mb,该区域包含蛋白质编码合成所需要的绝大部分信息,被称为外显子组(Whole exome), 大约85%的致病突变位于外显子区域[11]。基因组靶向捕获技术的发展使得研究人员可以高效、特异地对外显子组进行测序[12,13]。2009年8月, Ng等[14]对4名无亲缘关系的弗里曼谢尔登综合征患者(已知该病的致病基因为MYH3)及8名正常对照的DNA样本进行外显子组测序, 通过对 12个样本的测序数据进行比较分析, 准确找出了位于 MYH3中的突变, 这是外显子组测序技术第一次成功应用于疾病致病基因的鉴定, 并预示了其作为遗传学研究工具的广阔前景。
本文就全外显子组测序在孟德尔疾病和复杂疾病中的应用进行综述。
外显子组测序指利用特殊的手段对全外显子组进行富集, 并进行高通量测序的技术方法。其基本流程包括外显子区域序列的富集、高通量测序及测序数据的生物信息学分析。
测序平台以Illumina公司的Solexa和Hiseq二代测序技术为主[15,16]。近两年来, LifeTechnologies推出了基于多重PCR的AmpliSeq外显子捕获方法, 该捕获方法结合 Ion torrent代测序平台因能显著缩短实验周期而逐渐受到研究人员的亲睐[17,18]。随着测序技术的快速发展, 市场上还涌现出以 PacBio的SMRT技术和Oxford的Nanopore技术为代表的三代测序技术[19,20], 极大地改善了测序准确度。
生物信息学分析的目的是挖掘变异位点, 包括SNP和 Indels。首先是通过质控排除测序过程中低质量的Reads, 然后将高质量的Reads与参考基因组进行比对, 统计SNP和Indels, 并对这些变异位点进行注释。Qian等[21]开发了一套标准的数据处理流程,可以高效快速的自动化处理高通量测序数据, 得到变异位点列表。研究人员再根据疾病的种类、测序样本的数量等设计方案对这些变异位点进行深入分析, 最终确定候选变异位点。
孟德尔遗传病, 又叫单基因病, 是指由于单个基因突变而导致的疾病, 它常以孟德尔遗传模式存在于家系中。2010年, Ng等[22]利用外显子组测序成功地鉴定了米勒综合征的致病基因 DHODH; 之后,外显子组测序技术被广泛应用于鉴定各种孟德尔遗传疾病致病突变。截止2013年1月, 已有超过150种孟德尔遗传病的致病基因通过外显子组测序被鉴定出来[23,24], 如Ohdo综合征(KAT6B)[25]、阵发性运动障碍(PRRT2)[26]、Bohring-Opitz综合征(ASXL1)[27]、脊椎干骺端发育不良(KIF22)[28]、高酯血症(APOE)[29]、先天性静止性夜盲(LRIT3)[30]。
对于孟德尔遗传病而言, 疾病的遗传模式在很大程度上影响了实验设计和数据分析, 充分利用家系信息能够显著缩小候选致病基因的范围[24]。孟德尔遗传病的遗传模式可以大致分为隐性遗传和显性遗传两大类。
2.1 隐性遗传病
隐性遗传病包括非近亲结婚隐性遗传病、近亲结婚隐性遗传病以及X-连锁隐性遗传病。
非近亲结婚隐性遗传病的致病突变一般为复合杂合突变(Compound heterozygous mutations), 即患者的双亲所携带的突变位点不一致, 而单个突变并不致病, 只有当个体同时携带两个突变位点时才患病(图1A)。致病突变鉴定策略为:首先保留患者中具有两个突变的基因, 若某个基因的两个突变分别存在于正常双亲中, 则该基因有可能是该病的致病基因。Janneke等[31]通过对两个符合非近亲结婚隐性遗传模式的癫痫性脑病家系进行外显子组测序, 成功找出致病基因DOCK7。另一方面, 虽然非近亲结婚隐性遗传病的致病基因为纯和突变的情况较少,但在分析的时候不能完全排除这种可能性, 如 John等[32]通过对一个非近亲结婚隐性遗传模式的神经元蜡样脂褐质沉积症家系进行分析, 发现一个纯和致病基因突变KCTD7。近亲结婚的隐性遗传病的致病基因一般为纯和突变(Homozygous mutations)(图1B)。致病突变鉴定策略为:若某一突变在患者中为纯合,而在正常双亲中为杂合, 那么该突变有可能为该病的致病突变。Christiano等[33]对一近亲结婚的多毛症家系进行外显子组测序, 确定一个致病基因ABCA5;该基因其在患者中为纯和突变, 而父母中则为该基因杂合突变的携带者。总之, 由于个体携带的复合杂合突变或纯和突变数目稀少, 因此鉴定具有以上两类隐性遗传模式的孟德尔遗传病的致病基因相对容易。
施索仁认为,中国市场对马士基来说非常重要,贸易订单的减少将对马士基的物流业务产生不利影响。马士基集团主要是在集装箱运输、物流、码头运营、石油和天然气开采与生产,以及与航运和零售行业相关其他活动中,为客户提供服务,马士基集团旗下的马士基航运是全球最大的集装箱承运输公司。
X-连锁隐性遗传病的致病基因位于X染色体上(图1C)。若某一突变存在于男性患者的X染色体上,且在女性携带者中为杂合, 那么该突变有可能为疾病的致病突变。符合这类遗传模式的疾病, 致病基因的鉴定同样比较简单。但值得注意的是, 在家系结构不完善的情况下, 研究人员常常难以区分 X-连锁隐性遗传模式和常染色体隐性遗传模式。Diamond-Blackfan贫血是一个典型的例子:研究人员首先根据常染色体隐性遗传模式对该家系进行分析, 没能找到致病基因; 但当研究人员采用 X-连锁隐性遗传模式进行分析时, 成功发现了致病基因GATA1, 该基因在另外一组人群中得到了验证[34]。对家系遗传模式的准确判断, 可大大节省致病基因筛选的时间和成本, 如 Ginevra等[35]通过对一个具有两例小脑性共济失调患者的三代家系进行分析,发现该家系符合X-连锁隐性遗传模式, 便针对X染色体外显子组进行测序, 成功地找到了其致病基因PMCA3。
2.2 显性遗传病
利用外显子组测序鉴定显性遗传疾病致病基因则相对比较困难(图 1D), 这是因为通过测序得到的候选基因数目庞大, 而致病突变的强致病性通常导致家系过小, 使得对相应致病基因的鉴定达不到足够的检验效能[24]。其分析策略为:寻找患者共有的杂合突变, 排除正常人中存在的杂合突变, 剩下的突变则可能为疾病的致病突变。
对于符合显性遗传模式的遗传病, 其致病基因的分析很多时候需要结合连锁分析等方法。Liu等[36]利用连锁分析(全基因组微卫星标记)将两个家族发作性疼痛病家系的致病基因定位在3p22.3-p21.32上,然后利用外显子组测序在两个家系中发现了SCN11A基因(3p22.2)的两个错义突变, 最后结合家系内共分离分析以及 SCN11A基因功能研究, 确定SCN11A为家族发作性疼痛一个新的致病基因。
图1 孟德尔隐性遗传和显性遗传模式示意图
复杂疾病, 如肿瘤、精神疾病、心血管疾病等,其典型特征是风险因素多样, 遗传异质性高, 给研究人员对致病基因的鉴定带来极大的困难。
截止2014年5月, 研究人员利用GWAS鉴定出5804个具有强关联信号的SNP(p< 1x 10-8)[37]。但所有这些常见变异都是微效基因, 并且只能解释一小部分遗传度[38,39]。目前普遍接受的观点是利用GWAS筛查得到的SNP只是作为一个标签, 而与该标签处于连锁不平衡的罕见变异才是真正的致病变异[40]。
外显子组测序用于复杂疾病的遗传研究, 其策略主要有以下两种:基于人群的外显子组测序, 致力于寻找频发突变(Recurrent mutations)或新生突变(De novo mutations); 基于家系的外显子组测序, 致力于寻找遗传变异(Inherited mutations)。研究人员认为, 对于复杂疾病而言, 散发病例的易感基因多来源于de novo突变, 而家系的易感基因则多来自于遗传突变[41]。
3.1 恶性肿瘤
突变过度积累可导致恶性肿瘤的发生。肿瘤细胞高度的遗传异质性极大地制约了对肿瘤遗传因素的发掘。此外, 肿瘤突变大部分为新生体细胞突变,传统的 GWAS在肿瘤遗传学研究中越来越捉襟见肘。Chang等[42]利用外显子组测序对8种常用的癌症细胞系进行测序分析, 结果显示对众多已知突变位点的分型结果与用Affymetrix SNP array 6.0芯片的分型结果具有高度的一致性(95%)。这表明外显子组测序应用于癌症基因组的研究不仅廉价, 而且十分可靠。近年来, 利用全外显子组测序已经成功鉴定出多种肿瘤的众多变异。Brastianos等[43]利用外显子组测序发现在 92%(11/12)的颅咽管瘤患者中发现CTNNB1具有突变:其中3例乳头状颅咽管瘤患者为位于 BRAF编码区的点突变(p.Val600Glu), 扩大样本对该位点进行分型发现, 约 95%(36/39)的患者具有该点突变。Li等[44]在57例胆囊癌-癌旁组织对照样本中利用外显子组测序发现多个患者中存在TP53(47.1%)、ERBB3(11.8%)和KRAS(7.8%)的突变;此外, ErbB通路相关基因在 36.8%的患者中存在突变, 提示该通路可能广泛参与胆囊癌的发生发展。Kakiuchi等[45]对30例弥漫性胃癌样本进行外显子组测序, 并在57例样本中进行验证发现25.3%的弥漫性胃癌患者中存在RHOA的点突变, 这些点突变主要有Tyr42、Arg5和Gly17等。
3.2 重性精神疾病
重性精神疾病包括精神分裂症、孤独症、智力发育障碍、重性抑郁症以及双相情感障碍等。研究表明, de novo突变在重性精神疾病中扮演着十分重要的角色。Xu等[46]利用外显子组测序对53名精神分裂症患者以及22名正常对照的de novo突变进行分析, 发现 51%(27/53)的精神分裂症患者携带至少一个de novo突变, 而在正常人中该比例约为32%。Xu等[47]在另一篇有关精神分裂症 de novo 拷贝数变异(CNV)的分析中, 发现约有 10%(15/152)的精神分裂症患者携带de novo CNVs, 而该比例在正常人中仅为1.3%(2/159)。两项研究表明超过60%的精神分裂症患者携带 de novo突变。Takata等[48]在 231例精神分裂症患者中发现 2个位于 SETD1A的 de novo突变, 该基因编码一个组蛋白甲基转移酶, 可以调节染色质的结构。
除精神分裂症之外, 研究人员在其他精神疾病,如孤独症、智力发育障碍中都发现了大量 de novo突变。Gregor等[49]通过对智力障碍核心家系(triofamily)进行测序分析, 在CTCF中发现一个de novo错义突变以及一个de novo移码突变。CTCF基因编码染色质结构重塑蛋白, 位于CTCF中的de novo可以通过影响染色质的结构进而影响增强子与启动子之间的相互作用。Tavassoli等[50]在孤独症患者中发现位于基因SCN2A的点突变(c.476 + 1G > A), 该突变可能导致编码的蛋白质缩短并介导mRNA降解。
在鉴定得到大量de novo突变的同时, 我们也应该注意到, 并不是找到的de novo突变都是疾病的真正易感基因, 因为任何个体都有一定的机会携带 de novo突变。如何设计实验并采用新的研究策略是遗传学家需要重点思考的问题。
此外, 大量重性精神疾病患者也存在家族聚集倾向, 这提示重性精神疾病在特定条件下也可能符合孟德尔遗传模式。遗传学家按照孟德尔遗传病的分析模式, 已成功鉴定出多个精神疾病致病基因,解释了部分精神疾病的遗传基础。例如, 研究人员对多个患有神经系统疾病的家系进行外显子组测序,通过分析发现这些患者具有共同的突变基因 CLP1,该基因负责调控细胞中的 tRNA代谢, 携带该基因突变的儿童表现大脑畸形、智力障碍、癫痫、感知和运动缺陷等症状[51,52]。
3.3 心血管疾病
心血管疾病是老年人死亡的重要原因。根据遗传因素的不同, 可以将心血管疾病分为两类, 即单基因型(包括离子通道病、家族型血脂异常等)和多基因型(如心肌肥厚、扩张型心肌病等)。先天性心脏病是一类病因不明的心血管疾病。Glessner等[53]通过拷贝数芯片分析和外显子组测序发现, 与正常对照相比, 先天性心脏病患者携带更多的拷贝数变异(CNV); 结合外显子组测序的数据, 作者发现 ETS1和CTBP2可能是先天性心脏病新的易感基因。Theis等[54]利用外显子组测序对一个符合隐性遗传模式的扩张型心肌病进行分析, 发现了位于GATAD1中的一个点突变。此外, 外显子组测序还成功在家族型血脂过少(ANGPTL3)[55]、重型血脂过多(ABCG)[56]以及家族型心肌扩张(BAG3)等疾病中发现了新的易感基因。
利用外显子组测序挖掘心脏、肺和血液的遗传变异, 美国国家心脏、肺和血液研究所(NHLBI)还发起了 Grand Opportunity Exome Sequencing Project (ESP)。该计划共收集了超过200 000人的外显子组测序数据, 取得了广泛的成果[57,58]。
2013年10月, Yang等[59]对外显子组测序的实验方法、生物信息分析等流程进行了详细介绍, 并提示外显子组测序可用于遗传病的临床诊断。随后, Nature和The New England Journal of Medicine杂志分别发布了人类疾病遗传变异研究指南和高通量测序临床应用指南, 对高通量测序实验设计、数据分析、功能验证、临床应用等提供了指导准则, 加深了人们对外显子组测序在人类疾病中应用的认识[60,61]。
尽管外显子组测序在人类疾病的遗传学研究中取得了极大的成功, 但该技术本身也存在一些缺点,主要包括外显子捕获效率及测序正确率。
为了系统评价外显子组测序技术对致病突变的检测效率, Gilissen等[62]对 51个外显子组测序数据的 37 424个 SNP位点(Human Genome Mutation Database)进行了分析。共有35 296个突变位点被成功捕获, 捕获成功率为94.3%; 测序深度在10x以上的突变位点约占全部位点的 80.8%, 其中不能被成功检测的位点所在区域大都显示过高或过低的 GC含量[63]。研究表明, 对 GC丰富的基因组区域而言,打断捕获和基于多重PCR的捕获方式均具有较高的捕获能力; 但对 AT丰度的基因组区域而言, AmpliSeq在捕获时会出现很大的偏差[64]。除基因组本身过高或过低的GC或AT含量及其特殊结构之外,所有外显子组捕获试剂盒的探针设计都不能实现对外显子区域100%的覆盖度, 使得部分外显子区域成为测序盲区。随着全基因组测序费用的进一步降低,采用全基因组测序, 替代外显子组测序, 进行遗传变异的挖掘将会是必然的趋势。
测序深度对突变位点的检测能力有较大影响。Hoischen等[65]利用芯片捕获结合深度测序的方法对 5名常染色体隐性遗传共济失调患者的已知致病突变进行再验证, 结果只发现6/7的已知突变。将测序数据量提高 3倍以后, 研究人员成功检测到第 7个突变。此外, 不管是哪种测序平台, 测序过程中都不可避免地存在一些错误[66,67]。研究人员发现与Hiseq测序平台相比, 在相同测序深度的条件下, Ion Torrent可以检测出更多的变异位点, 但其假阳性也相应提高[68]。Robasky等[69]总结了高通量测序实验中产生的错误主要有 3大类, 分别来自样品制备、文库制备以及测序和成像过程。在测序过程中, 从样品制备到数据分析, 都有可能产生错误, 而其中一些错误是可以避免的。
随着新一代测序技术的快速发展, 全基因组测序和全外显子组测序的应用越来越广泛[70], 由于与疾病相关的大部分功能性变异基本集中在染色体的外显子区, 通过外显子组测序能够迅速获得外显子区域的遗传信息。与全基因组测序相比, 外显子组测序成本更低、覆盖度更广、冗余数据更少, 可以快速有效地发掘疾病的致病基因或易感基因。但是任何一个外显子组捕获平台的捕获效率都不能达到100%, 使得部分外显子组序列不能被捕获, 而且越来越多的研究显示, 非编码区在疾病的发生发展中也同样扮演着十分重要的角色。因此, 如果仅仅对外显子组进行测序, 可能会丢失部分重要的遗传信息。随着高通量技术的发展, 测序成本越来越低, 目前已经实现1000美元全基因组测序, 相比之下, 全基因组测序在未来的研究中可能具有更大的发展空间。
[1] McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet, 2008, 9(5): 356–369.
[2] McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet, 2007, 80(4): 588–604.
[3] Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. Nat Rev Genet, 2006, 7(4): 277–282. [4] Wang Y, Hu Y, Fang Y, Zhang KR, Yang H, Ma JT, Xu Q, Shen Y. Evidence of epistasis between the catechol-O-methyltransferase and aldehyde dehydrogenase 3B1 genes in paranoid schizophrenia. Biol Psychiatry, 2009, 65(12): 1048–1054.
[5] Xu Q, Jia YB, Zhang BY, Zou K, Tao YB, Wang YP, Qiang BQ, Wu GY, Shen Y, Ji HK, Huang Y, Sun XQ, Ji L, Li YD, Yuan YB, Shu L, Yu X, Shen YC, Yu YQ, Ju GZ, Chinese Schizophrenia Consortium. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry, 2004, 9(5): 510–521.
[6] Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, Weber R, Karevan R, Larson MC, Song H, Tessier DC, Bacot F, Vincent D, Cunningham JM, Dennis J, Dicks E, Aben KK, Anton-Culver H, Antonenkova N, Armasu SM, Baglietto L, Bandera EV, Beckmann MW, Birrer MJ, Bloom G, Bogdanova N, Brenton JD, Brinton LA, Brooks-Wilson A, Brown R, Butzow R, Campbell I, Carney ME, Carvalho RS, Chang-Claude J, Chen YA, Chen Z, Chow WH, Cicek MS, Coetzee G, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Despierre E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Edwards R, Ekici AB, Fasching PA, Fenstermacher D, Flanagan J, Gao YT, Garcia-Closas M, Gentry-Maharaj A, Giles G, Gjyshi A, Gore M, Gronwald J, Guo Q, Halle MK, Harter P, Hein A, Heitz F, Hillemanns P, Hoatlin M, Høgdall E, Høgdall CK, Hosono S, Jakubowska A, Jensen A, Kalli KR, Karlan BY, Kelemen LE, Kiemeney LA, Kjaer SK, Konecny GE, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee N, Lee J, Leminen A, Lim BK, Lissowska J, Lubiński J, Lundvall L, Lurie G, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, Menon U, Modugno F, Moysich KB, Nakanishi T, Narod SA, Ness RB, Nevanlinna H, Nickels S, Noushmehr H, Odunsi K, Olson S, Orlow I, Paul J, Pejovic T, Pelttari LM, Permuth-Wey J, Pike MC, Poole EM, Qu X, Risch HA, Rodriguez-Rodriguez L, Rossing MA, Rudolph A, Runnebaum I, Rzepecka IK, Salvesen HB, Schwaab I, Severi G, Shen H, Shridhar V, Shu XO, Sieh W, Southey MC, Spellman P, Tajima K, Teo SH, Terry KL, Thompson PJ, Timorek A, Tworoger SS, van Altena AM, van den Berg D, Vergote I, Vierkant RA, Vitonis AF, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wik E, Winterhoff B, Woo YL, Wu AH, Yang HP, Zheng W, Ziogas A, Zulkifli F, Goodman MT, Hall P, Easton DF, Pearce CL, Berchuck A, Chenevix-Trench G, Iversen E, Monteiro AN, Gayther SA, Schildkraut JM, Sellers TA. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet, 2013, 45(4): 362–370, 370e1–370e2.
[7] Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev, 2009, 19(3): 212–219.
[8] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature, 2009, 461(7265): 747–753.
[9] Witte JS. Rare genetic variants and treatment response: sample size and analysis issues. Stat Med, 2012, 31(25): 3041–3050.
[10] Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet, 2010, 11(1): 31–46.
[11] Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Özen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A, 2009, 106(45): 19096–19101.
[12] Jordan CT, Cao L, Roberson ED, Pierson KC, Yang CF, Joyce CE, Ryan C, Duan SH, Helms CA, Liu Y, Chen YQ, McBride AA, Hwu WL, Wu JY, Chen YT, Menter A, Goldbach-Mansky R, Lowes MA, Bowcock AM. PSORS2 is due to mutations in CARD14. Am J Hum Genet, 2012, 90(5): 784–795.
[13] Li JY, Zhu XL, Wang X, Sun W, Feng B, Du T, Sun B, Niu FH, Wei H, Wu XP, Dong L, Li LP, Cai XQ, Wang YP, Liu Y. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis. J Med Genet, 2012, 49(2): 76–78.
[14] Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J. Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 2009, 461(7261): 272–276.
[15] Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 2008, 9: 387–402.
[16] Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135–1145.
[17] Millat G, Chanavat V, Rousson R. Evaluation of a new NGS method based on a custom AmpliSeq library and Ion Torrent PGM sequencing for the fast detection of genetic variations in cardiomyopathies. Clin Chim Acta, 2014, 433: 266–271.
[18] Tsongalis GJ, Peterson JD, de Abreu FB, Tunkey CD, Gallagher TL, Strausbaugh LD, Wells WA, Amos CI. Routine use of the Ion Torrent AmpliSeqTMCancer Hotspot Panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med, 2014, 52(5): 707–714.
[19] Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Landscape of next-generation sequencing technologies. Anal Chem, 2011, 83(12): 4327–4341.
[20] Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol, 2013, 14(7): 405.
[21] Li WK, Li FY, Zhang SY, Cai B, Zheng N, Nie Y, Zhou D, Zhao Q. Automatic analysis pipeline of next-generation sequencing data. Hereditas, 2014, 36(6): 618–624.
[22] Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet, 2010, 42(1): 30–35.
[23] Zhang XJ. Exome sequencing greatly expedites the progressive research of Mendelian diseases. Front Med, 2014, 8(1): 42–57.
[24] Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet, 2013, 14(10): 681–691.
[25] Clayton-Smith J, O'Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Fryer A, Chandler KE, Kerr B, Tassabehji M, Lynch SA, Krajewska-Walasek M, McKee S, Smith J, Sweeney E, Mansour S, Mohammed S, Donnai D, Black G. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet, 2011, 89(5): 675–681.
[26] Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, Guo SL, He J, Chen YF, Zhang QJ, Li HF, Lin Y, Murong SX, Xu JF, Wang N, Wu ZY. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet, 2011, 43(12): 1252–1255.
[27] Hoischen A, van Bon BW, Rodríguez-Santiago B, Gilissen C, Vissers LE, de Vries P, Janssen I, van Lier B, Hastings R, Smithson SF, Newbury-Ecob R, Kjaergaard S, Goodship J, McGowan R, Bartholdi D, Rauch A, Peippo M, Cobben JM, Wieczorek D, Gillessen-Kaesbach G, Veltman JA, Brunner HG, de Vries BB. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet, 2011, 43(8): 729–731.
[28] Min BJ, Kim N, Chung T, Kim OH, Nishimura G, Chung CY, Song HR, Kim HW, Lee HR, Kim J, Kang TH, Seo ME, Yang SD, Kim DH, Lee SB, Kim JI, Seo JS, Choi JY, Kang D, Kim D, Park WY, Cho TJ. Whole-exome sequencing identifies mutations of KIF22 in spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type. Am J Hum Genet, 2011, 89(6): 760–766.
[29] Marduel M, Ouguerram K, Serre V, Bonnefont-Rousselot D, Marques-Pinheiro A, Erik BK, Devillers M, Luc G, Lecerf JM, Tosolini L, Erlich D, Peloso GM, Stitziel N, Nitchké P, Jaïs JP, French Research Network on ADH, Abifadel M, Kathiresan S, Leren TP, Rabes JP, Boileau C, Varret M. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p. Leu167del mutation. Hum Mutat, 2013, 34(1): 83–87.
[30] Zeitz C, Jacobson SG, Hamel CP, Bujakowska K, Neuille M, Orhan E, Zanlonghi X, Lancelot ME, Michiels C, Schwartz SB, Bocquet B, Congenital Stationary Night Blindness Consortium, Antonio A, Audier C, Letexier M, Saraiva JP, Luu TD, Sennlaub F, Nguyen H, Poch O, Dollfus H, Lecompte O, Kohl S, Sahel JA, Bhattacharya SS, Audo I. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal- recessive complete congenital stationary night blindness. Am J Hum Genet, 2013, 92(1): 67–75.
[31] Perrault I, Hamdan FF, Rio M, Capo-Chichi JM, Boddaert N, Décarie JC, Maranda B, Nabbout R, Sylvain M, Lortie A, Roux PP, Rossignol E, Gérard X, Barcia G, Berquin P, Munnich A, Rouleau GA, Kaplan J, Rozet JM, Michaud JL. Mutations in DOCK7 in Individuals with Epileptic Encephalopathy and Cortical Blindness. Am J Hum Genet, 2014, 94(6): 891–897.
[32] Staropoli JF, Karaa A, Lim ET, Kirby A, Elbalalesy N, Romansky SG, Leydiker KB, Coppel SH, Barone R, Xin W, MacDonald ME, Abdenur JE, Daly MJ, Sims KB, Cotman SL. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet, 2012, 91(1): 202–208.
[33] DeStefano GM, Kurban M, Anyane-Yeboa K, Dall'Armi C, Di Paolo G, Feenstra H, Silverberg N, Rohena L, López-Cepeda LD, Jobanputra V, Fantauzzo KA, Kiuru M, Tadin-Strapps M, Sobrino A, Vitebsky A, Warburton D, Levy B, Salas-Alanis JC, Christiano AM. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet, 2014, 10(5): e1004333.
[34] Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio JA, Beggs AH, Sieff CA, Orkin SH, Nathan DG, Lander ES, Gazda HT. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest, 2012, 122(7): 2439–2443.
[35] Zanni G, CalìT, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N, Montecchi-Palazzi L, Hu H, Chelly J, Bertini E, Brini M, Carafoli E. Mutation of plasma membrane Ca2+ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+homeostasis. Proc Natl Acad Sci U S A, 2012, 109(36): 14514–14519.
[36] Zhang XY, Wen JM, Yang W, Wang C, Gao LN, Zheng LH, Wang T, Ran KK, Li YL, Li XY, Xu M, Luo JY, Feng SL, Ma XX, Ma HY, Chai ZY, Zhou Z, Yao J, Zhang X, Liu JY. Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet, 2013, 93(5): 957–966.
[37] Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res, 2014, 42(Database issue): D1001–D1006.
[38] Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet, 2010, 11(6): 415–425.
[39] Maher B. Personal genomes: The case of the missing heritability. Nature, 2008, 456(7218): 18–21.
[40] Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol, 2010, 8(1): e1000294.
[41] Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong association of de novo copy number mutations with autism. Science, 2007, 316(5823): 445–449.
[42] Chang H, Jackson DG, Kayne PS, Ross-Macdonald PB, Ryseck RP, Siemers NO. Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines. PLoS One, 2011, 6(6): e21097.
[43] Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M,Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND, Scott RM, Dunn IF, Laws EJ, Stewart C, Ligon KL, Hoang MP, Van Hummelen P, Hahn WC, Louis DN, Resnick AC, Kieran MW, Getz G, Santagata S. Exome sequencing identifies BRAF mutations in lary craniopharyngiomas. Nat Genet, 2014, 46(2): 161–165.
[44] Li ML, Zhang Z, Li XG, Ye JY, Wu XS, Tan ZJ, Liu C, Shen BY, Wang XA, Wu WG, Zhou DZ, Zhang D, Wang T, Liu BY, Qu K, Ding QC, Weng H, Ding Q, Mu JS, Shu YJ, Bao RF, Cao Y, Chen PZ, Liu TY, Jiang L, Hu YP, Dong P, Gu J, Lu W, Shi WB, Lu JH, Gong W, Tang ZH, Zhang Y, Wang XF, Chin YE, Weng XL, Zhang H, Tang W, Zheng YL, He L, Wang H, Liu Y, Liu YB. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet, 2014, 46(8): 872–876.
[45] Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, Yamamoto S, Tatsuno K, Katoh H, Watanabe Y, Ichimura T, Ushiku T, Funahashi S, Tateishi K, Wada I, Shimizu N, Nomura S, Koike K, Seto Y, Fukayama M, Aburatani H, Ishikawa S. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet, 2014, 46(6): 583–587.
[46] Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet, 2011, 43(9): 864–868.
[47] Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet, 2008, 40(7): 880–885.
[48] Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron, 2014, 82(4): 773–780.
[49] Gregor A, Oti M, Kouwenhoven EN, Hoyer J, Sticht H, Ekici AB, Kjaergaard S, Rauch A, Stunnenberg HG, Uebe S, Vasileiou G, Reis A, Zhou HQ, Zweier C. De novo mutations in the genome organizer CTCF cause intellectual disability. Am J Hum Genet, 2013, 93(1): 124–131.
[50] Tavassoli T, Kolevzon A, Wang AT, Curchack-Lichtin J, Halpern D, Schwartz L, Soffes S, Bush L, Grodberg D, Cai G, Buxbaum JD. De novo SCN2A splice site mutation in a boy with Autism spectrum disorder. BMC Med Genet, 2014, 15: 35.
[51] Schaffer AE, Eggens VR, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue YC, Kayserili H, Yasuno K, Rosti RO, Abdellateef M, Caglar C, Kasher PR, Cazemier JL, Weterman MA, Cantagrel V, Cai N, Zweier C, Altunoglu U, Satkin NB, Aktar F, Tuysuz B, Yalcinkaya C, Caksen H, Bilguvar K, Fu XD, Trotta CR, Gabriel S, Reis A, Gunel M, Baas F, Gleeson JG. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell, 2014, 157(3): 651–663.
[52] Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, Jhangiani SN, Wiszniewski W, Withers M, Campbell IM, Erdin S, Isikay S, Franco LM, Gonzaga-Jauregui C, Gambin T, Gelowani V, Hunter JV, Yesil G, Koparir E, Yilmaz S, Brown M, Briskin D, Hafner M, Morozov P, Farazi TA, Bernreuther C, Glatzel M, Trattnig S, Friske J, Kronnerwetter C, Bainbridge MN, Gezdirici A, Seven M, Muzny DM, Boerwinkle E, Ozen M, Clausen T, Tuschl T, Yuksel A, Hess A, Gibbs RA, Martinez J, Penninger JM, Lupski JR. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell, 2014, 157(3): 636–650.
[53] Glessner J, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M, Mazaika EJ, Vardarajan B, Italia MJ, Leipzig J, DePalma S, Golhar R, Sanders SJ, Yamrom B, Ronemus M, Iossifov I, Willsey AJ, State MW, Kaltman JR, White PS, Shen Y, Warburton D, Brueckner M, Seidman C, Goldmuntz E, Gelb BD, Lifton R, Seidman JG, Hakonarson H, Chung WK. Increased frequency of de novo copy number variations in congenital heart disease by integrative analysis of SNP array and exome sequence data. Circ Res, 2014: CIRCRESAHA.114.304458.
[54] Theis JL, Sharpe KM, Matsumoto ME, Chai HS, Nair AA, Theis JD, de Andrade M, Wieben ED, Michels VV, Olson TM. Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ Cardiovasc Genet, 2011, 4(6): 585–594.
[55] Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, Garimella KV, Fisher S, Abreu J, Barry AJ, Fennell T, Banks E, Ambrogio L, Cibulskis K, Kernytsky A, Gonzalez E, Rudzicz N, Engert JC, DePristo MA, Daly MJ, Cohen JC, Hobbs HH, Altshuler D, Schonfeld G, Gabriel SB, Yue P, Kathiresan S. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med, 2010, 363(23): 2220–2227.
[56] Rios J, Stein E, Shendure J, Hobbs HH, Cohen JC. Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum MolGenet, 2010, 19(22): 4313–4318.
[57] Lange LA, Hu YN, Zhang H, Xue CY, Schmidt EM, Tang ZZ, Bizon C, Lange EM, Smith JD, Turner EH, Jun G, Kang HM, Peloso G, Auer P, Li KP, Flannick J, Zhang J, Fuchsberger C, Gaulton K, Lindgren C, Locke A, Manning A, Sim XL, Rivas MA, Holmen OL, Gottesman O, Lu YC, Ruderfer D, Stahl EA, Duan Q, Li Y, Durda P, Jiao S, Isaacs A, Hofman A, Bis JC, Correa A, Griswold ME, Jakobsdottir J, Smith AV, Schreiner PJ, Feitosa MF, Zhang Q, Huffman JE, Crosby J, Wassel CL, Do R, Franceschini N, Martin LW, Robinson JG, Assimes TL, Crosslin DR, Rosenthal EA, Tsai M, Rieder MJ, Farlow DN, Folsom AR, Lumley T, Fox ER, Carlson CS, Peters U, Jackson RD, van Duijn CM, Uitterlinden AG, Levy D, Rotter JI, Taylor HA, Gudnason VJ, Siscovick DS, Fornage M, Borecki IB, Hayward C, Rudan I, Chen YE, Bottinger EP, Loos RJ, Saetrom P, Hveem K, Boehnke M, Groop L, McCarthy M, Meitinger T, Ballantyne CM, Gabriel SB, O'Donnell CJ, Post WS, North KE, Reiner AP, Boerwinkle E, Psaty BM, Altshuler D, Kathiresan S, Lin DY, Jarvik GP, Cupples LA, Kooperberg C, Wilson JG, Nickerson DA, Abecasis GR, Rich SS, Tracy RP, Willer CJ. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am J Hum Genet, 2014, 94(2): 233–245.
[58] Kim DS, Crosslin DR, Auer PL, Suzuki SM, Marsillach J, Burt AA, Gordon AS, Meschia JF, Nalls MA, Worrall BB, Longstreth WJ Jr, Gottesman RF, Furlong CE, Peters U, Rich SS, Nickerson DA, Jarvik GP. Rare coding variation in paraoxonase-1 is associated with ischemic stroke in the NHLBI Exome Sequencing Project[S]. J Lipid Res, 2014, 55(6): 1173–1178.
[59] Yang YP, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu ZY, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med, 2013, 369(16): 1502–1511.
[60] MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, Conrad DF, Cooper GM, Cox NJ, Daly MJ, Gerstein MB, Goldstein DB, Hirschhorn JN, Leal SM, Pennacchio LA, Stamatoyannopoulos JA, Sunyaev SR, Valle D, Voight BF, Winckler W, Gunter C. Guidelines for investigating causality of sequence variants in human disease. Nature, 2014, 508(7497): 469–476.
[61] Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med, 2014, 370(25): 2418–2425.
[62] Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. Human Gene Mutation Database (HGMD®): 2003 update. Hum Mutat, 2003, 21(6): 577–581.
[63] Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet, 2012, 20(5): 490–497.
[64] Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012, 13: 341.
[65] Hoischen A, Gilissen C, Arts P, Wieskamp N, van der Vliet W, Vermeer S, Steehouwer M, de Vries P, Meijer R, Seiqueros J, Knoers NVAM, Buckley MF, Scheffer H, Veltman JA. Massively parallel sequencing of ataxia genes after array-based enrichment. Hum Mutat, 2010, 31(4): 494–499.
[66] Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods for next-generation sequencing. Brief Bioinform, 2013, 14(1): 56–66.
[67] Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A, 2012, 109(36): 14508–14513.
[68] Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012, 13: 341.
[69] Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet, 2014, 15(1): 56–62.
[70] 张鑫, 李敏, 张学军. 全基因组外显子测序及其应用.遗传, 2011, 33(8): 847–856.
(责任编委: 胡松年)
The application of exome sequencing in human diseases
Shuquan Rao, Tingfu Du, Qi Xu
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
It is estimated that approximately 85% of human disease mutations are located in protein coding regions, and therefore selectively sequencing all protein coding regions (exome) would be cost-effective and an alternative strategy to identify variants of disease. Linkage analysis followed by candidate positional cloning has been used for identifying disease-causing genes of Mendelian disorders for a long time; however, this approach showed not only time-consuming but also low success rate. In 2009, scientists successfully identified one missense mutation in MYH3 among four individuals with Freeman Sheldon syndrome (one autosomal dominant disease) through exome sequencing, suggesting that exome sequencing could be a powerful tool for the identification of Mendelian disease variants. As for complex diseases, though traditional association studies and genome-wide association studies (GWAS) have identified a large number of common variants, their application in identification of low-frequency or rare variants isquite limited. The development of the next-generation sequencing technology provides us an opportunity to deal with the problem. In this review, we summarize the application of exome sequencing in human diseases.
exome sequencing; Mendelian disorder; complex disease
2014-07-30;
2014-10-13
国家自然科学基金项目(编号:31222031), 中央高校基本科研业务费专项资金项目(编号:2012S05)和协和青年科研基金项目(编号:2012J09)资助
饶书权, 博士研究生, 研究方向:医学遗传学。E-mail: raoshuquantongji@163.com杜廷福, 博士研究生, 研究方向:医学遗传学。E-mail:dutingfu2912@163.com饶书权和杜廷福同为第一作者。
许琪, 博士, 研究员, 研究方向:医学遗传学。E-mail: xuqi@pumc.edu.cn
10.3724/SP.J.1005.2014.1077
时间: 2014-10-16 16:05
URL: http://www.cnki.net/kcms/detail/11.1913.R.20141016.1605.004.html