地中海拟无枝酸菌S699电转化方法的优化

2014-05-04 18:42王明艳何璟
湖北农业科学 2014年4期
关键词:枝菌同源霉素

王明艳++何璟

摘要:地中海拟无枝酸菌S699(Amycolatopsis mediterranei S699)能够产生具有重要经济价值的抗生素——利福霉素B。在该菌株中建立高效的遗传操作系统是研究利福霉素生物合成机制以及构建基因工程高产菌株的基础。研究利用单因素试验探索了供体质粒的构型、

关键词:地中海拟无枝酸菌S699(Amycolatopsis mediterranei S699);利福霉素B;电转化;同源缺失

中图分类号:Q784 文献标识码:A 文章编号:0439-8114(2014)04-0920-05

Optimizing Electroporation of Amycolatopsis mediterranei S699

WANG Ming-yan,HE Jing

(State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China)

Abstract: Amycolatopsis mediterranei S699 produced an important antibiotic, rifamycin B having high economic value. To investigate biosynthetic pathway of rifamycins and construct high-yield strains by genetic engineering, establishment of a highly efficient genetic manipulation system was critically required in this strain. The effects of dsDNA and ssDNA, concentration of glycine and MgCl2 in culture medium, and electroporation parameters on electroporation efficiency were studied by single factor test. Using 34% YEME medium supplemented with 0.05 g/L glycine and 2.5 mmol/L MgCl2 to cultivate mycelia, electroporation parameters of 9 kV/cm, 25 μF and 550 Ω, double-stranded DNA as donor, a highly efficient electroporation method for A. mediterranei S699 was established with the transformation efficiency of 3.37×102 transformant/μg DNA. The homologous deletion mutant strain of the cytochrome P450 oxygenase gene orf5 from the rifamycin biosynthetic gene cluster was obtained by using the optimized method. It is demonstrated that the optimized eletroporation could be employed for genetic study on the rifamycin biosynthetic pathway.

Key words: Amycolatopsis mediterranei S699; rifamycin B; electroporation; in-frame deletion

地中海拟无枝酸菌S699(Amycolatopsis mediterranei S699)隶属放线菌目假诺卡氏菌科拟无枝酸菌属,为革兰氏阳性菌,能合成并分泌利福霉素B(Rifamycin B)。利福霉素具有广谱的抗菌作用,对革兰氏阳性细菌,特别是对耐药性金黄色葡萄球菌(Multiple-resistant Staphylococcus aureus)具有很强的抑制作用,对某些革兰氏阴性菌的感染也有一定的治疗效果[1],同时对肿瘤和艾滋病也有很好的治疗效果[2]。目前,以利福霉素SV为母核通过化学或酶学的方法合成了利福平、利福米特、利福布丁、利福喷丁、利福拉齐等利福霉素类衍生物。其中,利福布丁和利福拉齐是治疗抗耐药性疾病及抗艾滋病并发症的有效药物,而其他则主要用于结核和麻风等疾病的治疗[3]。

利福霉素是一种萘醌型的安莎类抗生素,由3-氨基-5-羟基苯甲酸(AHBA)起始,在Ⅰ型聚酮合酶(PKS)的作用下逐步加载延伸单元进行碳链的延伸,到达合适长度时,碳链末端折回与起始端的氨基通过酰胺键连接形成大环结构,然后进一步修饰形成终产物[4-6]。利福霉素最初的发酵液中有A、B、C、D、E五种组分,其中B为主要成分,后来人们又在不同产生菌株的发酵液中发现了利福霉素O、S、SV等组分。利福霉素B的活性虽然较小,但却很容易转化为其他活性较高的衍生物,如利福霉素O、S、SV。通过生物合成发现在地中海拟无枝酸菌S699中,利福霉素B作为终产物是由利福霉素S和SV经后修饰加工而成[7]。利用基因工程的方法可以提高活性物质利福霉素SV的产量,进而获得可生产不同利福霉素类药物的前体物质。而建立有效的遗传操作系统则是进行遗传学研究及开展基因工程研究的基础环节。虽然早期科学家借用链霉菌菌丝体电转化的方法可以将外源DNA转入地中海拟无枝酸菌S699中[5,8],但由于转化效率太低,不利于利福霉素合成机制的研究。因此,科学家对利福霉素类产生菌进行了大量筛选,获得了利福霉素SV的产生菌地中海拟无枝酸菌U-32并建立了新的电转化法[9]。前期,课题组对这两种电转化方法进行了对比,发现基本步骤大体相同,主要区别在于后者去除了电转化缓冲液中的磷酸缓冲液(pH 7.4)和PEG以及使用了较低的电场强度,从而使得电转化效率比前者提高了一个数量级。该方法的转化效率虽然有所提高,但仍然不能很好地满足基因中断和基因敲除试验的需求。为此,本研究以地中海拟无枝酸菌U-32的电转化法为基础,对各种电转化条件进行了优化,建立了一种高效的地中海拟无枝酸菌S699的电转化方法,然后利用优化后的方法对利福霉素生物合成基因簇中负责后修饰反应的细胞色素P450氧化酶基因orf5进行了敲除[10]。

1 材料与方法

1.1 材料

1.1.1 菌种和质粒 地中海拟无枝酸菌S699由美国俄勒冈州立大学Taifo Mahmud教授馈赠;大肠杆菌(Escherichia coli)DH5α和质粒pBluescript Ⅱ KS(-)由华中农业大学微生物学国家重点实验室保存。

1.1.2 培养基 大肠杆菌培养基为LB固体、液体培养基,地中海拟无枝酸菌培养基为TSB、34%YEME、GYM培养基[11]。

1.1.3 主要试剂 氨苄青霉素购自Sigma公司,潮霉素B购自Roche公司,限制性内切酶购自Fermantas公司,KOD DNA高保真酶和T4 DNA连接酶购自TOYOBO公司,DNA Marker和rTaq DNA聚合酶购自广州东盛生物科技有限公司,溶菌酶购自BIOSHARP公司,普通DNA凝胶回收试剂盒购自AXYGEN公司,TSB培养基购自B & D公司,其余药品购自国药集团。

1.2 方法

1.2.1 重组质粒pWMYD01的构建 利用引物orf5-for-u:5′-2 结果与分析

2.1 重组质粒pWMYD01的构建

目前在地中海拟无枝酸菌中能够自主复制的质粒载体极少,文献报道的地中海拟无枝酸菌的遗传操作方法中多采用噬菌体载体系统[13]。经过PCR扩增、酶切、连接、转化等分子生物学操作后,成功构建了细胞色素P450氧化酶基因orf5同源缺失的重组质粒pWMYD01(图1)。该质粒含有基因orf5上游和下游的两个同源片段及可以在地中海拟无枝酸菌中进行筛选的潮霉素抗性基因,没有地中海拟无枝酸菌的复制子,进入地中海拟无枝酸菌以后,只有通过一次同源重组反应才能够整合到染色体上,获得具有潮霉素抗性的转化子。

2.2 单双链DNA构型对电转化效率的影响

2.5 不同电场强度对电转化效率的影响

2.6 不同电阻对电转化效率的影响

2.7 orf5基因同源缺失突变菌株的构建

3 小结与讨论

参考文献:

[1] FLOSS H G. Rifamycin: Mode of action, resistance, and biosynthesis[J]. Chemical Reviews,2005,105(2):621-632.

[2] WEINER M, BENATOR D, BURMAN W, et al. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis[J]. Clinical Infectious Diseases,2005,40(10):1481-1491.

[3] 张静霞,王欣瑜,唐克慧.利福霉素类抗生素分析方法研究进展[J]. 中国抗生素杂志,2009,34(10):588-592.

[4] TANG L, YOON Y J, CHOI C Y, et al. Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei[J]. Gene,1998,216(2):255-265.

[5] KIM C G, YU T W, FRYHLE C B, et al. 3-amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics[J]. Journal of Biological Chemistry,1998,273(11): 6030-6040.

[6] AUGUST P R, TANG L, YOON Y J, et al. Biosynthesis of the ansamycin antibiotic rifamycin: Deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699[J]. Chemistry & Biology,1998,5(2):69-79.

[7] XU J, MAHMUD T, FLOSS H G. Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699[J]. Archives of Biochemistry and Biophysics,2003,411(2):277-288.

[8] MAZY-SERVAIS C, BACZKOWSKI D, DUSART J. Electroporation of intact cells of Streptomyces parvulus and Streptomyces vinaceus[J]. FEMS Microbiology Letters,1997,151(2):135-138.

[9] 丁晓明.地中海氏拟无枝菌酸菌(Amycolatopsis mediterranei) U-32遗传操作系统的建立[D]. 上海:中国科学院上海生命科学研究院,2003.

[10] XU J, WAN E, KIM C J, et al. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699[J]. Microbiology,2005,151(8):2515-2528.

[11] KIESER T, BIBB M J, BUTTNER M J, et al. Practical Streptomyces Genetics[M]. UK: John Innes Foundation,2000.

[12] MANIATIS T, FRITSCH E F, SAMBROOK J. Molecular Cloning: A Laboratory Manual[M]. New York: Cold Spring Harbor Laboratory Cold Spring Harbor, 1982.

[13] 李文华. 完善地中海氏拟无枝菌酸菌U32 遗传操作系统的研究工作[D]. 沈阳: 沈阳药科大学, 2002.

[14] 丁晓明,张 霓,田永强,等. 利用同源重组建立地中海拟无枝菌酸菌U32染色体的基因置换/中断系统[J].生物工程学报,2002,18(4):431-437.

[15] SCHUPP T, TOUPET C, ENGEL N, et al. Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei[J]. FEMS Microbiology Letters,1998,159(2):201-207.

[16] LAL R, LAL S, GRUND E, et al. Construction of a hybrid plasmid capable of replication in Amycolatopsis mediterranei[J]. Applied and Environmental Microbiology,1991,57(3):665-671.

[17] MADON J, HUTTER R. Transformation system for Amycolatopsis (Nocardia) mediterranei: direct transformation of mycelium with plasmid DNA[J]. Journal of Bacteriology, 1991,173(20): 6325-6331.

[18] 郑 璞,王 蕾,史朝辉.地中海拟无枝酸菌原生质体电融合及其在提高利福霉素SV发酵效价中的应用[J].中国抗生素杂志,2002,27(5):267-269.

[9] 丁晓明.地中海氏拟无枝菌酸菌(Amycolatopsis mediterranei) U-32遗传操作系统的建立[D]. 上海:中国科学院上海生命科学研究院,2003.

[10] XU J, WAN E, KIM C J, et al. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699[J]. Microbiology,2005,151(8):2515-2528.

[11] KIESER T, BIBB M J, BUTTNER M J, et al. Practical Streptomyces Genetics[M]. UK: John Innes Foundation,2000.

[12] MANIATIS T, FRITSCH E F, SAMBROOK J. Molecular Cloning: A Laboratory Manual[M]. New York: Cold Spring Harbor Laboratory Cold Spring Harbor, 1982.

[13] 李文华. 完善地中海氏拟无枝菌酸菌U32 遗传操作系统的研究工作[D]. 沈阳: 沈阳药科大学, 2002.

[14] 丁晓明,张 霓,田永强,等. 利用同源重组建立地中海拟无枝菌酸菌U32染色体的基因置换/中断系统[J].生物工程学报,2002,18(4):431-437.

[15] SCHUPP T, TOUPET C, ENGEL N, et al. Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei[J]. FEMS Microbiology Letters,1998,159(2):201-207.

[16] LAL R, LAL S, GRUND E, et al. Construction of a hybrid plasmid capable of replication in Amycolatopsis mediterranei[J]. Applied and Environmental Microbiology,1991,57(3):665-671.

[17] MADON J, HUTTER R. Transformation system for Amycolatopsis (Nocardia) mediterranei: direct transformation of mycelium with plasmid DNA[J]. Journal of Bacteriology, 1991,173(20): 6325-6331.

[18] 郑 璞,王 蕾,史朝辉.地中海拟无枝酸菌原生质体电融合及其在提高利福霉素SV发酵效价中的应用[J].中国抗生素杂志,2002,27(5):267-269.

[9] 丁晓明.地中海氏拟无枝菌酸菌(Amycolatopsis mediterranei) U-32遗传操作系统的建立[D]. 上海:中国科学院上海生命科学研究院,2003.

[10] XU J, WAN E, KIM C J, et al. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699[J]. Microbiology,2005,151(8):2515-2528.

[11] KIESER T, BIBB M J, BUTTNER M J, et al. Practical Streptomyces Genetics[M]. UK: John Innes Foundation,2000.

[12] MANIATIS T, FRITSCH E F, SAMBROOK J. Molecular Cloning: A Laboratory Manual[M]. New York: Cold Spring Harbor Laboratory Cold Spring Harbor, 1982.

[13] 李文华. 完善地中海氏拟无枝菌酸菌U32 遗传操作系统的研究工作[D]. 沈阳: 沈阳药科大学, 2002.

[14] 丁晓明,张 霓,田永强,等. 利用同源重组建立地中海拟无枝菌酸菌U32染色体的基因置换/中断系统[J].生物工程学报,2002,18(4):431-437.

[15] SCHUPP T, TOUPET C, ENGEL N, et al. Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei[J]. FEMS Microbiology Letters,1998,159(2):201-207.

[16] LAL R, LAL S, GRUND E, et al. Construction of a hybrid plasmid capable of replication in Amycolatopsis mediterranei[J]. Applied and Environmental Microbiology,1991,57(3):665-671.

[17] MADON J, HUTTER R. Transformation system for Amycolatopsis (Nocardia) mediterranei: direct transformation of mycelium with plasmid DNA[J]. Journal of Bacteriology, 1991,173(20): 6325-6331.

[18] 郑 璞,王 蕾,史朝辉.地中海拟无枝酸菌原生质体电融合及其在提高利福霉素SV发酵效价中的应用[J].中国抗生素杂志,2002,27(5):267-269.

猜你喜欢
枝菌同源霉素
蜡蚧轮枝菌及其在有害生物防治中的应用研究进展
两岸年味连根同源
以同源词看《诗经》的训释三则
阿奇霉素在小儿百日咳的应用
桑叶中1-脱氧野尻霉素的抗病毒作用研究进展
“铤”有“直”义的词源学解释——兼说/直/义的同源词族
大丽轮枝菌致病及微菌核形成相关基因研究进展
我国科学家揭示大丽轮枝菌寄主适应性的分子进化机制
虔诚书画乃同源