对一道课后题解法的探究

2014-04-29 14:11:18江宝龙
数学学习与研究 2014年4期
关键词:教材探究方法

江宝龙

【摘要】 高中数学教学的基础在教材,发展能力也要依靠教材. 教材的例题和习题是经过专家精心筛选的,应充分利用好教材习题,做到一题多解、多题一解、一题多变,往往会起到事半功倍的效果.

【关键词】 教材;方法;探究

本文对人民教育出版社出版的《普通高中新课程标准实验教科书数学选修2—2》89页练习2解法做简单研究.

题目 求证 + > 2 + .

分析 其实这个题非常简单,很多同学都会仿照该节课的例题2,利用平方的手段对其证明.

证明 (平方手段)

要证 + > 2 + ,

只需证( + ) 2 > (2 + )2成立,

只需证13 + 2 > 13 + 4 成立,

即 > 2 成立,即42 > 40成立.

∵ 42 > 40显然成立,

∴ + > 2 + .

变式一 - > - .

此变式很容易发现就是对该题做一个移项处理,但是却蕴含着大文章.

法一 (移项平方) 证明略.

法二 (分子有理化)

解析 要证 - > - 成立,

只需证 > 成立,

只需证 + < + 成立.

∵ < , < ,

∴ + < + ,

∴ > ,

∴ - > - .

法三 (巧用斜率)

要证 - > - 成立,

只需证 > 成立.

令k1 = ,k2 = .

其中,k1表示连接(5, ),(7, )两点直线的斜率,k2表示连接(6, ),(8, )两点直线的斜率.

∵ 函数f(x) = 在定义域内为增函数,且在任意一点处切线的斜率逐渐减小,

∴ k1 > k2,所以 > .

法四 (巧用构造函数)

构造函数f(x) = - .

要证 - > - 成立,

只需f(5) > f(6)成立.

∵ f(x) = - 在定义域内为减函数(由单调性定义或者导数或者分子有理化都容易说明其单调性),

∴ f(5) > f(6),∴ - > - .

变式二 - < - (n∈N*).

此变式是利用本章刚刚讲过的归纳推理,可以归纳出一个简单结论,利用上面的方法均能证明.

《普通高中数学课程标准》对高中数学教学建议第2条提到:帮助学生打好基础,发展能力. 高中数学教学的基础就在教材,发展能力也要依靠教材,教材是高中数学教学的基础. 对书上例题和课后题的把握和深度研究就显得尤为重要,充分利用好例题和课后题,能取得事半功倍的效果,既巩固了基础知识,又发展了学生的能力.

猜你喜欢
教材探究方法
一道探究题的解法及应用
教材精读
教材精读
教材精读
一道IMO预选题的探究
中等数学(2021年11期)2021-02-12 05:11:46
教材精读
探究式学习在国外
快乐语文(2018年13期)2018-06-11 01:18:16
一道IMO预选题的探究及思考
中等数学(2018年11期)2018-02-16 07:47:42
可能是方法不对
用对方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52