刘建博 郑雪 宋百军 李荣权 康伟 马丽娟
摘要 [目的] 探索不同饲养模式对杂交鹿血清中MBL抗菌活性的影响。[方法] 采用平板计数法研究双阳梅花鹿和清原马鹿杂交F1代MBL的抗菌活性,探讨MBL作为补体功能候选蛋白的可行性,分析MBL抗化脓感染创伤致病菌的活性。[结果] 放养模式试验组抗金黄色葡萄球菌活性和抗大肠杆菌活性都显著高于圈养模式试验组、D-甘露糖试验组和N-乙酰基-D-葡萄糖胺试验组(P<0.05)。放养模式试验组抗金黄色葡萄球菌活性和抗大肠杆菌活性对动物机体的保护作用具有显著的生物学意义。[结论]该研究可为杂交一代肉用鹿的抗病高产育种工作提供一定的理论依据和基础资料。
关键词 饲养模式;杂交鹿;MBL;抗菌活性
中图分类号 S825 文献标识码 A 文章编号 0517-6611(2014)26-09038-02
Effect of Different Feeding Modes on Serum of MBL Antibacterial Activity in Hybrid Deer
LIU Jian-bo,MA Li-juan et al
(Jilin Agricultural Science and Technology College, Jilin, Jilin 132101; Key Laboratory of Changbai Mountain Animal and Plant Resources' Utilization and Protection of Universities in Jilin Province, Jilin, Jilin 132101)
Abstract [Objective] The research aimed to the effects of different feeding modes on the antibacterial activity of MBL in the serum of hybridized deer. [Method] The antibacterial activity of MBL in hybridized F1 generation of Shuangyang Deer and Qingyuan Wapiti was determined by using plate counting method. The feasibility of taking MBL as functional candidate protein of complement was discussed. The antibacterial activity of MBL against pathogens caused by pyogenic infection and wound was analyzed. [Result] The antibacterial activities of MBL to Staphylococcus aureus and Escherichia coli in grazing mode group were significantly higher than those in captive mode group, D-mannose group and N-acetyl -D-glucosamine group(P<0.05). The antibacterial activities to S. aureus and E. coli in grazing model group were of significant biological meaning for protecting the animal bodies. [Conclusion] The research could provide theoretical basis and basic data for disease-resistant and high-yield breeding of hybridized meat deer.
Key words Feeding mode;Hybrid Deer;MBL;Antibacterial Activity
鹿屬于野生动物,喜跑跳,尤其是幼龄鹿活动强度和范围更大,因而导致化脓感染创伤的几率很大。由于鹿的化脓感染创伤治疗难度大,增加养鹿成本,并且致病微生物、残留毒素和药物残留会影响鹿肉品质。虽然传统的化脓感染创伤防治方法对创伤治疗起到了一定作用,但很难控制化脓感染创伤的发生,同时也带来了药物残留和耐药菌株等问题。随着免疫遗传学的高速发展,从遗传免疫角度寻找具有抗炎效应的候选蛋白已成为抗病育种的热点。补体系统的先天性免疫应答功能对病原微生物有溶菌作用和调理作用,其免疫功能是通过特异性受体和分子间相互作用实现的[1]。甘露糖结合凝集素(Mannan-binding lectin,MBL)是一种模式识别蛋白,由肝细胞分泌后进入血液的,属于C型胶原凝集素(钙依赖型凝集素)[2]。MBL具有免疫活性,可以直接识别粘合多种病原微生物,能够通过凝集素途径激活补体。此外,MBL具有调理、中和及补体激活的功能,其抗菌作用高度依赖低聚体的聚集程度和糖识别域的成簇方向,并且糖识别域能效仿病原体表面结构而识别病原微生物[2-5]。目前,尚未见到关于鹿MBL的相关报道。基于此,笔者采用平板计数法研究双阳梅花鹿和清原马鹿杂交一代肉用鹿MBL的抗菌活性,探讨牛MBL作为补体功能候选蛋白的可行性,分析MBL抗化脓感染创伤致病菌的活性,旨在为杂交一代肉用鹿的抗病高产育种工作提供一定的理论依据和基础资料。
1 材料与方法
1.1 材料
1.1.1 血清。
选择圈养模式(吉林农业科技学院提供)和放养模式(吉林省九台市安锡山鹿苑提供)12月龄的双阳梅花鹿和清原马鹿杂交一代鹿各10头,采用长杆吹针方式对鹿进行麻醉,臀部肌注鹿眠宝3号(1.5~2.0 ml/头),完全麻醉后颈静脉采血5 ml,3 000 r/min离心15 min分离血清,-20 ℃条件下保存待测。采血后,每头试验鹿注射鹿醒宝1.5~2.0 ml催醒(静脉和肌肉注射各半)。
1.1.2 细菌。
由中国兽医药品监察所提供大肠杆菌(革兰氏阴性菌,E.coli ATCC35218)和金黄色葡萄球菌(革兰氏阳性菌,S.aureus ATCC29213)。
1.1.3 MBL特异性抑制剂。N-乙酰基-D-葡萄糖胺和D-甘露糖。
1.1.4 绵羊血。抗凝脱纤维绵羊血-用于制作血琼脂平板。
1.2 方法
1.2.1 分组。先按菌种分成不同处理,分为金黄色葡萄球菌处理(革兰氏阳性菌)和大肠杆菌处理(革兰氏阴性菌),每个处理又分为:①放养模式试验组:放养模式饲养的12月龄F1代鹿个体血清10个;②圈养模式试验组:圈养模式饲养的12月龄F1代鹿个体血清10个;
③D-甘露糖试验组:样本为放牧模式饲养的12月龄F1代鹿个体血清10个;④N-乙酰基-D-葡萄糖胺试验组:样本为放牧模式饲养的12月龄F1代鹿个体血清10个。
1.2.2 抗菌活性的测定。
将金黄色葡萄球菌悬浮液和大肠杆菌悬浮液(106 CFU/ml PBS)分别与放养模式试验组、圈养模式试验组、D-甘露糖试验组和N-乙酰基-D-葡萄糖胺试验组的鹿血清混合(200 μl,1∶1)置于高压灭菌过的EP管中,其中D-甘露糖试验组和N-乙酰基-D-葡萄糖胺试验组的鹿血清分别先与25 mmol/L D-甘露糖和50 mmol/L N-乙酰基-D-葡萄糖胺在5% CO2和37 ℃的条件下反应30 min后再与菌液混合;将密封后的EP管置于37 ℃和5% CO2的培养箱中反应24 h;再将每个完成反应的样本用PBS稀释105倍后均匀涂于平板上(大肠杆菌涂LB琼脂平板,金葡菌組涂血琼脂平板),每个样本重复3次;同样,将每个血平板置于37 ℃、5% CO2的培养箱中培养24 h(30 min后将平板倒置);最后,采用平板计数法对每个平板的CFU计数。
1.3 数据统计与分析
使用SPSS 17.0的一维方差分析程序按金黄色葡萄球菌组和大肠杆菌组对试验数据分别进行统计与分析。
2 结果与分析
从图1可以看出,放养模式试验组的抗金黄色葡萄球菌活性和抗大肠杆菌活性都显著高于圈养模式试验组、D-甘露糖试验组和N-乙酰基-D-葡萄糖胺试验组(P<0.05)。试验表明,放养模式试验组的抗金黄色葡萄球菌活性和抗大肠杆菌活性对动物机体的保护作用具有显著的生物学意义;圈养模式试验组则是有患病倾向的。
3 讨论
鹿化脓感染创伤主要是由微生物病原菌感染所致,特别是金黄色葡萄球菌和大肠杆菌,约占鹿化脓感染创伤比例的74%[6]。这些病原菌主要是由于挫伤严重、创内搓灭组织和血块较多、尘土、异物将细菌带入或因对新鲜污染创治疗不及时、处理不当而造成的[7]。
人MBL与真菌[8]、病毒[8-11]和细菌[12-13]的感染几率相关,动物机体易感染重症肺炎和系统传染病等疾病在很大程度上是由于凝集素变化引起的[14]。小鼠MBL与抗金黄色葡萄球菌活性显著相关[15],猪MBL与猪抵抗猪链球菌和猪环状病毒能力显著相关[16],水牛对布氏杆菌的抗性与MBL显著相关[17-19]。这说明不同的补体成分与动物机体对细菌、病毒和寄生虫的抵抗力显著相关。Lillie等[20]和Brooks等[21]研究表明猪MBL有粘合细菌的功能。刘建博等研究表明MBL与奶牛对乳腺炎抗性相关[22-23]。
综上所述,鹿MBL具有抗菌功能,放养模式个体对创伤致病菌具有显著抗性,而圈养模式个体为易感者,所以放养模式对鹿的健康有益,建议杂交肉用鹿采取围栏放养模式进行饲养。
参考文献
[1] LUTZ H U,JELEZAROVA E.Complement amplification revisited[J].Mol Immunol,2006,43:2-12.
[2] HOLMSKOV U,THIEL S,JENSENIUS J C.Collectins and ficolins:humoral lectins of the innate immune defense[J].Annual Review Immunol,2003,21:547-578.
[3] HOFFMANN J A,KAFATOS F C,JANEWAY C A,et al.Hylogenetic perspectives in innate immunity[J].Science,1999,284:1313-1318.
[4] THIELENS N M,TACNET-DELORME P,ARLAUD G J.Interaction of C1q and mannan-binding lectin with viruses[J].Immunobiology,2002,205:563-574.
[5] VAN DE WETERING J K,VAN GOLDE L M,BATENBURG J J.Collectins:players of the innate immune system[J].European Journal of Biochemistry,2004,271:1229-1249.
[6] 马丽娟,金顺丹,韦旭斌,等.鹿生产与疾病学[M].长春:吉林科学技术出版社,2003.
[7] 杜锐,魏吉祥.中国养鹿与疾病防治[M].吉林:中国农业出版社,2010.
[8] EISEN D P,MINCHINTON R M.Impact of mannose-binding lectin on susceptibility to infectious diseases[J].J Infect Dis,2003,37:1496-1505.
[9] GARRED P,MADSEN H O,BALSLEV U,et al.Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin.Lancet,1997,349:236-240.
[10] THIO C L,MOSBRUGER T,ASTEMBORSKI J,et al.Mannose binding lectin genotypes influence recovery from hepatitis B virus infection[J].J Virology,2005,79:9192-9196.
[11] ZHANG H X,ZHOU G Q,ZHI L T,et al.Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection[J].Journal of Infectious Diseases,2005,192:1355-1366.
[12] KOCH A,MELBYE M,SRENSEN P,et al.Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood[J].J Am Med Ass,2001,285:1316-1321.
[13] HIBBERD M L,SUMIYA M,SUMMERFIELD J A,et al.Association of the variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease[J].Lancet,1999,353:1049-1053.
[14] LILLIE B N,BROOKS A S,KEIRSTEAD N D,et al.Comparative genetics and innate immune functions of collagenous lectins in animals[J].Veterinary Immunology and Immunopathology,2005,108:97-110.
[15] SHI L,TAKAHASHI K,DUNDEE J,et al.Mannan-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus[J].J Exp Med,2004,199:1379-1390.
[16] LILLIE B N,KEIRSTEAD N D,SQUIRES E J,et al.Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C[J].Dev Comp Immunol,2007,31:830-846.
[17] CAPPARELLI R,PARLATO M,AMOROSO M G,et al Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo(Bubalus bubalis)[J].Immunogenetics,2008,60:157-165.
[18] BORRIELLO G,CAPPARELLI R,BIANCO M,et al.Genetic resistance to Brucella abortus in the water buffalo(Bubalus bubalis).Infect Immun,2006,74:2115-2120.
[19] CAPPARELLI R,ALFANO F,AMOROSO M G,et al.Protective effect of the Nramp1 BB genotype against Brucella abortus in the water buffalo (Bubalus bubalis)[J].Infect Immun,2007,75:988-996.
[20] LILLIE B N,HAMMERMUELLER J D,MACINNES J I,et al.Porcine mannan-binding lectin A binds to Actinobacillus suis and Haemophilus parasuis[J].Dev Comp Immunol,2006,30:954-965.
[21] BROOKS A S,DELAY J P,HAYES M A.Characterization of porcine plasma ficolins that bind Actinobacillus pleuropneumoniae serotype 5B[J].Immunobiology,2003,207:327-337.
[22] LIU J B,JU Z H,MA L J,et al.Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration,complement activityand milk production traits in Chinese Holstein[J].Immunogenetics,2011,63:727-742.
[23] 劉建博.牛MBL1基因多态性及其与产奶性能和乳腺炎相关性研究[D].长春:吉林农业大学,2011.