王志英 问荣荣
摘要 [目的]测定Hsp40基因沉默对舞毒蛾生长发育及Hsp40基因表达量的影响。[方法]体外合成双链RNA(dsRNA),并将dsRNA通过微注射入舞毒蛾3龄幼虫体内,测定Hsp40基因沉默对舞毒蛾生长发育及Hsp40基因表达量的影响。[结果]分别注射ddH2O、dsRNAGFP和dsRNAHsp40 后8 d,dsRNAGFP处理组舞毒蛾幼虫相对取食量显著高于ddH2O和dsRNAHsp40处理组(P<0.05);但3种处理对舞毒蛾幼虫的相对生长率、食物利用率、食物转化率、近似消化率方面均无显著性差异。注射后4 d,ddH2O处理组的舞毒蛾幼虫体重累计增长率最大,其次是dsRNAHsp40处理组,dsRNAGFP处理组的体重累计增长率最小,这与4 d的幼虫鲜重一致;其余时间点,dsRNAHsp40处理组的体重累计增长率均大于ddH2O和dsRNAGFP处理组。将1 μl(1 μg/μl)的dsRNA注射入舞毒蛾幼虫体内,6~48 h Hsp40基因表达量显著下降,96 h基因表达量上调。[结论] 该研究为进一步利用沉默舞毒蛾Hsp40基因在害虫防治中的应用提供理论依据。
关键词 舞毒蛾;Hsp40;RNA干扰;基因沉默
中图分类号 S188 文献标识码
A 文章编号 0517-6611(2014)26-08890-04
Functional Analysis of Hsp40 Gene in Lymantria dispar Mediated RNAi Technology
WANG Zhi-ying et al (College of Forestry, Northeast Forestry University, Harbin,Heilongjiang 150040)
Abstract [Objective] The aim was to measure the effects of Hsp40 gene silencing on growth and Hsp40 gene expression of L.dispar larvae.[Method] The 1 μg/μl of double-stranded RNA (dsRNA) in vitro synthesized,was microinjected into 3rd instar Lymantria dispar larvae. The effects of Hsp40 gene silencing on growth and Hsp40 gene expression of L. dispar larvae were measured. [Result]The results showed the relative consumption rate (RCR) of L. dispar larvae microinjected by dsRNAGFP was higher than those microinjected by ddH2O and dsRNAHsp40 at 8 d time point. However, relative growth ratio (RGR), efficiency of conversion of ingested food (ECI), approximate digestibility (AD), efficiency of conversion of digested food (ECD) of L. dispar larvae among three treatments were no significant differences. After 4 d of microinjection, the weight cumulative growth rates of L. dispar larvae were decreasing order of ddH2O, dsRNAHsp40 and dsRNAGFP, which were consistent with the larvae weight. At the rest of time points, weight cumulative growth rate of dsRNAHsp40 treatment group were greater than other treatment groups. After microinjection 1 μg/μl of dsRNA into the L. dispar larvae ranged from 6 h to 48 h, Hsp40 gene expressions were significantly decreased,while those increased at 96 h. [Conclusion]These results provided a theoretical basis for further silencing Hsp40 gene of L. dispar into pest control.
Key words Lymantria dispar;Hsp40;RNAi;Gene silencing
NAPOLI等[1]將外源基因引入矮牵牛(Petunia hyhrida Vilm)后发现内源同源基因出现沉默,将此现象称为共抑制。GUO等[2]用反义RNA阻断线虫基因表达的试验中发现,反义和正义RNA都阻断了基因的表达。1998年,FIRE等[3]在线虫 (Caenorhabditis elegans)试验中发现在体外转录正义RNA时生成的双链RNA(double strand RNA,dsRNA)导致基因表达的阻断。将由dsRNA引发生物体同源序列mRNA降解而最终导致特异性基因转录后沉默的效应称为RNA干扰(RNA interference,RNAi)。这一现象主要是通过dsRNA被一种称为Dicer的核酸酶切成21~25 nt的干扰性小RNA片段(siRNA),由siRNA介导识别并靶向切割同源性靶mRNA分子而实现基因沉默[4-7]。现已在真菌、植物、线虫、昆虫、哺乳动物等许多真核生物体内都发现了这种现象。由于RNAi诱导基因沉默的特异性[8]和高效性,特别是在非模式生物中操作的简便性,被广泛应用于多种生物的基因功能研究和有害生物控制研究[9-10],并实现了对鳞翅目昆虫烟草天蛾(Manduca sexta)[11-12]、斜纹夜蛾(Spodoptera litura)[13]和棉铃虫(Helicoverpa armigera)[14]等虫体内部分基因功能的研究。
热激蛋白(Heat Stress Proteins,Hsp)具有分子伴侣功能,主要参与生物体内新生肽的运输、折叠、组装、定位以及变性蛋白的复性和降解,在细胞生命活动中起着重要作用[15]。Hsp40蛋白是一类重要的分子伴侣,具有重要的生理功能。研究表明Hsp40蛋白在生物體正常及热激[16]、盐[17]、重金属[18]、毒物代谢等胁迫下参与蛋白质的折叠、转运、分泌和目标蛋白的降解等作用。Hsp40能够通过调节Hsp40/Hsp70的ATPase活性,使得Hsp70结合的底物多肽发生折叠,促进部分变性的蛋白复性(重新折叠)来保护胁迫损害的细胞并使其恢复正常功能[19-20]。Hsp40参与维持蛋白质结构的稳定和变性蛋白的复性作用,是一种与细胞多种生命活动密切相关的重要蛋白质[21]。舞毒蛾(Lymantria dispar)是一种世界性的、周期性发生的为害严重的森林食叶害虫,分布广,食性杂,国外报道可取食500多种植物,国内报道可为害杨、柳、落叶松、樟子松等多种植物,给林业生产造成较大的经济损失。笔者从舞毒蛾转录本文库中获得Hsp40基因全长cDNA序列,测定了RNAi对舞毒蛾幼虫营养利用及虫体鲜重变化情况的影响,并进一步采用实时荧光定量PCR技术探讨了体外合成dsRNA介导RNAi对Hsp40基因表达的影响,为RNAi技术在舞毒蛾防治中的应用提供理论依据。
1 材料与方法
1.1 供试昆虫
舞毒蛾初始卵块和人工饲料购于中国林业科学研究院森环森保研究所,幼虫于(25±1) ℃,光照14 L∶10 D,相对湿度75%的条件下人工饲养,取健康、大小一致舞毒蛾3龄幼虫进行试验。
1.2 dsRNA合成
采用RNeasy Mini动物组织总RNA提取试剂盒(Qiagen)提取舞毒蛾3龄幼虫的总RNA,用DNase I处理后,用1%琼脂糖凝胶电泳和紫外分光光度计检测总RNA的纯度和浓度。从舞毒蛾转录本文库中获得舞毒蛾Hsp40基因的cDNA全长序列和外源基因GFP的序列,分别设计引物(表1),每条特异性引物的5′端加20 bp的T7启动子序列。以PrimeScriptTM RT 试剂盒(TaKaRa)合成的cDNA第1链为模板进行RT-PCR,反应条件为:94 ℃ 3 min,94 ℃ 30 s,60 ℃ 30 s,72 ℃ 2 min,35个循环,72 ℃ 7 min,扩增产物经电泳检测确认并纯化后作为合成dsRNA的模板。参照MEGAscript RNAi试剂盒(Ambion)进行dsRNA的合成,于-80 ℃保存备用。
1.3 舞毒蛾营养利用与幼虫鲜重测定
将舞毒蛾人工饲料称其鲜重后放入培养皿内,分别接入饥饿10 h后体重大小相近的虫体内,并利用微量进样器(HAMILTON#489323)从腹部倒数第2节注入1 μl(1 μg/μl)的ddH2O、dsRNAGFP和dsRNAHsp40的舞毒蛾3龄幼虫,每组处理20头幼虫,重复3次[22]。正常饲喂8 d,每天按时称量幼虫虫体鲜重。待正常取食8 d后将舞毒蛾幼虫、取食后的饲料及粪便分别移至50 ℃烘箱内烘4 h后,再升温至120 ℃烘至恒重,称干重,另取刚蜕皮的30头3龄幼虫饥饿10 h后称重,并将新鲜人工饲料称其鲜重,然后分别在上述条件下烘干至恒重称取干重,计算幼虫和人工饲料干湿比,以推测幼虫和饲料干重。参照WALDBAUER[23]方法计算各营养指标:相对生长率(RGR)=(D-C)/[(C+D)/2]×100%;相对取食量(RCR)=(A-B)/[(C+D)/2];食物利用率(ECI)=(D-C)/(A-B)×100%;食物转化率(ECD)=(D-C)/(A-B-E)×100%;近似消化率(AD) =(A-B-E)/(A-B)×100%。式中,A为试验前饲料干重;B为试验后饲料干重;C为试验前幼虫干重;D为试验后幼虫干重;E为幼虫粪便干重。
体重累计增长率(%)=(注射后的体重-注射前的体重)/注射前的体重×100
1.4 实时荧光定量RT-PCR
将1 μl(1 μg/μl)GFP和Hsp40的基因dsRNA注射入舞毒蛾3龄幼虫体内,以ddH2O为对照,分别于6、24、48、96 h选取活泼的3龄幼虫提取总RNA,经DNase I(Promega)消化DNA,采用PrimeScriptTM RT 试剂盒(TaKaRa)合成cDNA,将合成cDNA稀释成100 μl,用作实时荧光定量PCR模板。实时荧光定量PCR使用试剂盒SYBR Green Real-time PCR Master mix(Toyobo)。内参基因为Actin、EF1α和TUB,引物序列见表1。实时荧光定量PCR反应体系为:10 μl 2×SYBR premix ExTaq酶、正向和反向引物(10 μmol/L)各1 μl、2 μl cDNA模板,加去离子水补足20 μl;反应条件为:94 ℃ 30 s,94 ℃ 12 s,60 ℃ 30 s,72 ℃ 40 s,4个循环,最后81 ℃ 1s读板。每处理重复3次,用2-△△Ct方法进行基因的表达量分析[24]。
1.5 数据统计分析
采用统计软件SPSS17.0(SPSS Inc.,USA)单因素方差分析(One-way ANOVA,Duncan)进行差异显著性分析。采用EXCEL2007软件进行数据统计和绘图。
2 结果与分析
2.1 dsRNA质量检测
提取的舞毒蛾幼虫总RNA经琼脂糖凝胶电泳检测和紫外分光光度计测得RNA的A260/A280=1.96,RNA质量合格。合成相应的dsRNA,用2%琼脂糖凝胶检测dsRNA的大小(图1),得到清晰的目的条带,经分光光度计测定,Hsp40基因dsRNA A260/A280=1.84,浓度为4.36 μg/μl,GFP基因dsRNA A260/A280=1.92,浓度为6.15 μg/μl。
通常昆虫RNAi研究的理想结果是靶标基因的沉默和出现相应生物表型的变化,然而并不是所有的试验都能出现可观表型异常。ARAUJO等[27]给长红烈蝽(Rhodnius prolixus)喂食针对唾液腺NP2基因的dsRNA有效降低了靶标基因的表達水平,但未产生可见的表型。OHNISHI等[28]研究RNAi对家蚕pgFAR、pgACBP和PBANR等信息素生物合成途径中的相关基因产生抑制时,发现信息素的生物合成却受到了抑制,对蛹的发育和成虫羽化并未产生任何影响。该研究通过将体外合成的dsRNA注射入舞毒蛾3龄幼虫体内有效降低了靶标基因的表达水平;在正常饲喂条件下,分别注射ddH2O、dsRNAGFP和dsRNAHsp40后,这3种处理下舞毒蛾幼虫的相对生长率、食物利用率、食物转化率、近似消化率均无显著性差异。舞毒蛾幼虫的体重累计增长率显示,注射后4 d,ddH2O对照组的体重累计增长率最大,dsRNAGFP处理组的体重累计增长率最小,这与4 d的虫体鲜重情况一致;在其余时间点,dsRNAHsp40处理组的体重累计增长率均大于ddH2O和dsRNAGFP处理组。热激蛋白在细胞内具有多种功能,包括新生蛋白的折叠、胞吞作用,多肽穿过细胞器质膜的转运,调整对各种胁迫的反应及对预降解蛋白的靶标等[29-31],并能够通过促进部分变性的蛋白复性(重新折叠)来保护胁迫损害的细胞并使其恢复正常功能[19-21]。Hsp40基因沉默可能会降低DnaK/Hsp70蛋白的活性,进而无法及时促进变性蛋白的复性,当机体受到胁迫损害时细胞不能及时恢复其功能正常,降低害虫应对外界胁迫时产生的蛋白修复能力,从而达到控制害虫的目的。笔者将通过舞毒蛾热激蛋白Hsp40基因沉默对杀虫剂胁迫的响应进一步探寻害虫控制。
参考文献
[1]NAPOLI C,LEMIEUX C,JORGENSEN R.Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J].Plant Cell,1990,2(4):279-289.
[2] GUO S,KEMPHUES K J.PAR-1,a gene required for establishing polarity in C.elegans embryos,encodes a putative ser/Thr kinase that is asymmetrically distributed[J].Cell,1995,81(4):611-620.
[3] FIRE A,XU S,MONTGOMERY M,et al.Potent and specific genetic interference mediated by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391:806-811.
[4] MISQUITTA L,PATERSON B M.Targeted disrup tion of gene function in Drosophila by RNA interference ( RNAi) :a role for nautilus in embryonic somatic muscle formation[J].Proc Natl Acad Sci USA,1999,96(4):1451-1456.
[5] ZAMORE P D,TUSCHL T,SHAR P P A,et al.RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to23 nucleotide intervals[J].Cell,2000,101(1):25-33.
[6] BERNSTEIN E,CAUDY A A,HAMMOND S C.Role for a bidentate ribonuclease in the initiation step of RNA interference[J].Nature,2001,409(6818):363-366.
[7] HAMMOND S M,CAUDY A A,HANNON G J.Post-transcrip tional genesilencing by double-stranded RNA[J].Nat Rev Genet,2001,2 (2) :110 -119.
[8] MONTGOMERY M K,XU S Q,FIRE A.RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans[J].Proc Natl Acad Sci USA,1998,95(26):15502-15507.
[9] AUER C,FREDERICK R.Crop improvement using small RNAs:applications and predictive ecological risk assessments[J].Trends Biotechnol ,2009,27( 11) :644-651.
[10] PERRIMON N,NI J Q,PERKINS L.In vivo RNAi:today and tomorrow[J].CSH Perspect Biol,2010,2(8):3640.
[11] LEVIN D M,BREUER L N,ZHUANG S,et al.A hemocyte-specific integrin required for hemocytic encap sulation in the tobacco hornworm,Manduca sexta[J].Insect Biochem Mol Biol,2005,35(5):369-380.
[12] SOBERN M,LPEZ L P,LPEZ I,et al.Engineering modified Bt toxins to counter inect resistance[J].Science,2007,318(5856):1640-1642.
[13] RAJAGOPAL R,SIVAKUMAR S,AGRAWAL N,et al.Silencing of midgut aminopep tidase-N of Spodoptera litura by Double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor[J].Biol Chem,2002,277(49):46849-46851.
[14] SIVAKUMAR S,RAJAGOPAL R,VENKATESH G R,et al.Knock down of aminopep tidase-N from Helicoverpa armigera arvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac [J].Biol Chem,2007,282(10):7312-7319.
[15] SZABO A,KORSZUN R,HARTL F U,et al.A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates[J].EMBO,1996,15(2):408-417.
[16] 周人綱,MIERNYK J A.拟南芥AtJ3基因的克隆和分析[J].植物学报,1999,41(6):597-602.
[17] ZHU J K,SHI J,BRESSAN R A,et al.Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ[J].Plant Cell,1993,5:341-350.
[18] 柴团耀,张玉秀,赵文明.DnaJ-like蛋白cDNA的克隆及其在重金属胁迫下的表达研究[J].自然科学进展,2000(10):135-140.
[19] GLOVER J R,LINDQUIST S.Hsp104,Hsp70,and Hsp40:a novel chaperone system that rescues previously aggregated proteins[J].Cell,1998,94:73-82.
[20] MACARIO A J L,DE MACARIO E C.The archaeal molecular chaperone machine:peculiarities and paradoxes[J].Genetics,1999,152 (4):1277-1283.
[21] WEBER-BAN E U,REID B G,MIRANKERA D,et al.Global unfolding of a substrate protein by the Hsp100 chaperone ClpA[J].Nature,1999,401:90-93.
[22] 周慧丹,杨亦桦,吴益东.RNAi介导的棉铃虫氨肽酶N基因Haapn1和钙粘蛋白基因Ha_BtR沉默对Cry1Ac毒力的影响[J].昆虫学报,2010,53(10):1097-1103.
[23] WALDBAUER G P.The consumption,digestion and utilization of solanaceous and non-solanaceous plants by larvae of the tobacco hornworm,Protoparce sexta (Johan.) (Lepidoptera:Sphingidae)[J].Entomologia Experimentalis et Applicate,2011,7(3):253-269.
[24] PFAFFL M W,HORGAN G W,DEMPFLE L.Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J].Nucleic Acids Res,2002,30:36.
[25] TERENIUS O,PAPANICOLAOU A,GARBUTT J S,et al.RNA interference in Lepidoptera:An overview of successful and unsuccessful studies and implications for experimental design[J].Insect Physiol,2011,57(2):231-245.
[26] OBER K A,JOCKUSCH E L.The roles of wingless and decapentap legic in axis and appendage development in the red flour beetle,Tribolium castaneum[J].Dev Biol,2006,294(2):391-405.
[27] ARAUJO R N,SANTOS A,PINTO F S,et al.RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus( Hemiptera:Reduviidae) by dsRNA ingestion or injection[J].Insect Biochem Mol Biol,2006,36(9):683-693.
[28] OHNISHI A,HULL J J,MATSUMOTO S.Targeted disruption of genes in the ombyx morisex pheromone biosynthetic pathway[J].PNAS,2006,103(12):4398-4403.
[29] TISSIERES A,MITCHELL H K,TRACY U M.Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J].Mol Biol,1974,84:389-398.
[30] BALLINGER D G,PARDUE M L.The control of protein synthesis during heat shock in Drosophila cells involves altered polypeptide elongation rates[J].Cell,1983,33(1):103-113.
[31] FEDER M E.Heat shock proteins,molecular chaperons and the stress response:evolutionary and ecological physiology[J].Annu Rev Physiol,1999,61:243-282.