林 燕,梁 萍
解放军总医院 介入超声科,北京 100853
热消融治疗调节机体抗肿瘤免疫研究进展
林 燕,梁 萍
解放军总医院 介入超声科,北京 100853
近年来影像引导下的热消融技术在肝、肾等肿瘤的治疗中发挥了重要的作用。局部热消融技术能够在一定程度上激活机体的抗肿瘤免疫,是真正意义上的体内肿瘤疫苗,但其诱发的免疫反应尚不足以完全消灭肿瘤或长期发挥预防肿瘤复发,因此与其他免疫调节手段同时应用的联合疗法可能发挥更有效的作用。
热消融;免疫调节;抗原;免疫治疗
近20年来局部肿瘤热消融技术迅速发展,极大提高了失去手术机会病人的生存率,并在一定程度上取代了外科手术。局部热消融技术是应用极热(射频、微波消融)或极冷(冷冻消融)的温度变化在局部破坏肿瘤组织,进而达到治疗的目的。此外热消融过程本身能够在原位留下肿瘤坏死残骸,这些残骸作为抗原能引发抗肿瘤免疫应答,有助于预防局部肿瘤复发。本文对肿瘤热消融后机体产生的免疫应答及不同热消融技术激活机体免疫反应的区别进行综述,为局部热消融联合免疫调节方法预防肿瘤局部复发提供理论支持。
射频消融是将1根或者多根射频电极置于肿瘤病灶内,通过高频交变电流的作用在局部产生60 ~ 100℃的高温,使肿瘤组织发生凝固性坏死[1-2]。微波消融是通过微波辐射器把某频率的电磁波能量转换成辐射能,后者被组织吸收转换为热能,进而对肿瘤组织造成凝固性破坏。两种消融技术都会在局部遗留凝固性坏死残骸,因此二者对机体局部和全身的免疫状态产生类似的影响。
与射频和微波消融不同,冷冻消融对免疫系统的作用可以表现为激活或者抑制性作用。以往的研究认为,冷冻消融主要导致细胞发生凋亡,细胞发生凋亡时不释放细胞内容物(抗原、热休克蛋白和高迁移率族蛋白B1)进而导致免疫耐受,局部的坏死细胞则可作为免疫激活剂,而凋亡细胞可导致局部免疫耐受和免疫抑制,近期的研究认为,冷冻消融的频次影响肿瘤的生长和局部的T细胞募集,并且是机体冷冻消融后处于免疫活化或免疫抑制状态的决定性因素[3-6]。
多项研究对射频消融后细胞因子、炎症趋化因子和应激素变化情况进行了检测,发现射频消融后数小时至数天机体血清中的促炎性细胞因子如IL-1β、IL-6、IL-8及TNF-α水平在射频消融后出现暂时性的升高,引起明显的体温升高伴肾上腺素水平升高,但不导致严重的全身性炎症反应综合征(systemic inflammatory response syndrome,SIRS)及多器官功能衰竭[7-11]。而冷冻消融可引发较严重的全身炎症反应综合征,部分病人伴随冷休克现象,主要发生于肝组织的冷冻消融[12-17]。动物实验证实,发生SIRS的风险与冷冻消融区的范围呈正相关,消融的肝组织>35%时发生SIRS的风险明显升高[15]。冷冻消融后数小时内血清中一系列细胞因子(如IFN-γ、TNF-α、IL-6、IL-12)水平升高,但不出现IL-10水平的升高[14,18-19]。射频消融、冷冻消融后大鼠血清中细胞因子水平的对比研究发现在冷冻消融后1 ~ 6 h血清中IL-6水平明显升高,IL-10水平仅有轻微升高[16]。而在前列腺癌病人冷冻消融后,血清TNF-α和IFN-γ可以持续增高达4 h以上[20]。
动物实验证实射频消融可导致肝组织中HSP-70、HSP-90、糖蛋白96转录、蛋白水平的表达上调以及HMGB1转位至肿瘤细胞质内和细胞间质中,且HSP-70的表达升高主要位于射频消融区的边缘[21-26]。对大鼠肝的不同部位进行射频消融,发现HSP-70的表达程度与消融区距大血管的相对位置有关,滋养血管能促进周边肝细胞的合成代谢以及热休克蛋白的表达[27]。此外HSP-70/HSP-90的表达水平与射频消融应用的能量具有相关性[22]。微波消融正常大鼠肾组织后,通过ELISA方法可检测到HSP-70的表达,然而与射频消融相比,微波消融后HSP-70的表达上调低于射频消融[28]。
临床研究发现射频消融后肿瘤病人血清中的HSP-70水平显著升高,然而血清HSP-70水平与消融区大小、肿瘤的组织学类型以及临床和实验室检测指标并无明确相关性,但预后较好的病人常伴有消融后次日血清HSP-70水平的升高[29]。
文献报道肺肿瘤患者接受射频消融1个月后外周血循环中Treg(CD4+CD25+Foxp3+)比例明显降低[8]。对20位原发性肝癌患者射频消融后的淋巴细胞亚群结果进行分析,发现在消融1个月后患者的T淋巴细胞亚群比例(初始/记忆性CD4+、CD8+)无明显变化,但循环中自然杀伤(natural killer,NK)细胞及活化T细胞的比例有所升高,而在治疗后1周、4周CD3-CD56dim效应NK细胞的比例明显增加[30-31]。动物实验发现多种免疫细胞(中性粒细胞、巨噬细胞、浆细胞、树突状细胞、CD3+和CD4+T细胞)在消融治疗后数小时至数天内可浸润至消融区边缘[32-34]。通过IFN-γELISPOT实验对20例原发性肝癌病人射频消融前的自身肿瘤抗原刺激的外周血单个核细胞进行检测,消融前在4例病人体内发现肿瘤抗原反应性T细胞,而在射频治疗后1个月在9例病人体内发现该反应性T细胞,这提示射频治疗在体内发挥了调节抗肿瘤免疫的作用,这一结果在另外两组原发性肝癌和结直肠肝转移癌的队列研究中得到了验证[30,35]。
射频诱导的T细胞应答具有抗原特异性,在原发性肝癌病人体内存在针对MAGE-1、NY-ESO-1、GPC3抗原的CD8+T细胞应答,在射频治疗前可检测到上述抗原的特异性免疫应答,而在射频治疗后约50%病人出现了抗原特异性免疫应答的上调[36]。在射频消融后肿瘤特异性T细胞免疫活化的原发性肝癌病人局部和远处部位的肿瘤复发率类似,但是肿瘤抗原特异性T细胞比例与原发性肝癌无病生存率呈正相关[30,36]。
冷冻消融对特异性抗肿瘤免疫的调节作用尚无明确结论,以往的研究认为,冷冻消融引发机体免疫抑制,尽管外周血循环中的免疫效应细胞增加但却不具有明显的杀伤肿瘤细胞的作用,冷冻消融有可能通过诱导Treg细胞或通过延迟抗肿瘤免疫来发挥负调节作用[37-38]。与上述结论相反,有研究认为,接受冷冻治疗的实验动物存在免疫激活的现象,对负荷淋巴瘤的小鼠进行冷冻治疗时可发现外周血淋巴细胞和脾细胞杀伤活性增加[39]。在小鼠结肠癌模型冷冻消融后7 d发现肿瘤特异性杀伤性T淋巴细胞活性增加,但这一效应仅在消融单个肿瘤结节时出现,而在消融多个结节后这一免疫激活效应反而减退,提示冷冻消融组织的范围可能对消融后机体免疫活化或抑制具有重要影响[40]。
在小鼠肝肿瘤模型中2只(共10只)小鼠在微波消融后对再次种植的肿瘤产生抑制,提示微波消融后机体出现保护性抗肿瘤免疫,这一保护性作用在瘤内注射负载GMCSF的微球后大大提高,腹腔内CTLA-4封闭效果更为明显,三者的联合应用对远处转移的肿瘤也具有抑制作用[41]。此外从处理组小鼠体内分离到的脾细胞能够在体外杀死肝肿瘤细胞。体外单克隆抗体封闭实验证实这种杀伤作用是由T细胞(CD4+和CD8+)及NK细胞介导的,而多种方法的联合应用能够发挥更强大的作用[41]。
冷冻消融联合瘤内注射未成熟树突细胞能够诱导活化CD4+CD8+杀伤性T细胞[42]。冷冻治疗前应用抗CD4或CD25单克隆抗体进行Treg耗竭能够增强这一协同效应[43]。联合治疗虽然能够延缓肿瘤的生长,但与单独冷冻消融相比,生存率并没有显著差异。冷冻消融前1 d向结肠癌小鼠注射环磷酰胺可以促进肿瘤特异性CD4+T细胞生成IFN-γ,并提高小鼠的生存率甚至完全治愈肿瘤,对治愈小鼠再次种植肿瘤小鼠仍可存活,而过继性移植存活小鼠的淋巴结细胞能够提高其他荷瘤小鼠的生存率,CD8+效应T细胞在其中发挥了重要的清除肿瘤作用,提示小鼠体内已建立了抗肿瘤免疫记忆。
临床应用方面有冷冻消融联合GM-CSF注射治疗前列腺癌的文献报道,T细胞对自体肿瘤抗原的活性在治疗后轻度增加,但是免疫应答与临床血清中前列腺特异性抗原水平无相关性[20]。在接受冷冻消融和GM-CSF注射联合治疗的部分肾癌病人中杀伤性T细胞活性和血清中抗肿瘤抗体的增加都与较好疗效存在相关性。
我们的前期研究发现,在微波消融1个月后10例脾亢病人出现短暂的外周血T辅助细胞(CD3+CD4+)和B淋巴细胞数量的增加[44]。在另外一项大样本的肝癌患者队列研究中,我们将微波消融前及微波消融后各时间点(3 ~ 30 d)的穿刺组织的免疫细胞浸润情况进行了分析,发现在微波消融区内、消融区、正常肝组织边缘以及远处未消融病灶内淋巴细胞(主要是CD3+T细胞,CD56+NK细胞和巨噬细胞)有明显的局部浸润,且淋巴细胞、巨噬细胞和CD56+NK细胞浸润入微波消融区内的数量与局部复发风险呈负相关[45]。随后10例原发性肝癌患者在微波消融后当日、微波消融后11 d、微波消融后100 d接受Ⅰ期临床过继性免疫治疗。将自身肿瘤抗原特异性的树突细胞在超声引导下分别注射入消融区与正常肝组织的边缘、腹股沟淋巴结内、体外活化的淋巴细胞。治疗后1个月进行外周T淋巴细胞亚群检测发现Treg(CD4+CD25+)细胞比例降低,而CD8+T细胞(CD8+CD28-)细胞比例升高,部分病人还出现乙肝病毒复制量的降低[46]。联合应用免疫治疗有可能在一定程度上增强微波消融在局部的免疫激活作用,起到预防原发性肝癌微波消融后复发的作用。
近20年来热消融技术以其微创性和不逊于外科手术的疗效等优点逐渐被肿瘤患者认识和接受,除了较好的局部肿瘤控制效果,热消融治疗还可以增强机体抗肿瘤免疫进而控制肿瘤进展。目前的研究认为,可能的机制包括: 1)热消融治疗后局部肿瘤组织坏死可以引起炎症反应和危险信号如热休克蛋白的释放; 2)促进坏死肿瘤组织内和附近微环境内树突细胞的募集和活化; 3)激活特异性抗肿瘤免疫,包括CD4+T细胞、CD8+T细胞的活化以及抗体的产生,进而促进局部肿瘤细胞的清除,控制远处的肿瘤微小转移灶和建立长期的抗肿瘤免疫记忆[18,37-39]。热消融同时也清除了局部的Treg,解除了局部的抑制性免疫状态,使得局部的免疫平衡趋向于抗肿瘤免疫[40,42-43]。然而热消融自身对免疫系统的调节作用仍较为微弱,其单一疗法不足以为机体提供全面的抗肿瘤保护作用[39,41]。热消融治疗对单发小病灶的疗效远优于晚期肿瘤,而联合其他提高机体抗肿瘤免疫的疗法有较好的应用前景,例如抗CTLA-4抗体、Treg耗竭等方法以及应用免疫佐剂(白介素、趋化因子、GM-CSF和TLR激动剂),但是上述联合治疗方案尚未广泛应用于临床。
机体自身免疫能够消灭较小的和亚临床阶段的肿瘤,而热消融治疗能够同时激活和提升机体自身的免疫状态。通过诱导机体自身的应激反应,热消融治疗能够打破机体的免疫耐受并活化机体的天然免疫和特异性抗肿瘤免疫,与其他方法如化疗、免疫调节疗法协同应用则可发挥更为强大的抗肿瘤作用。针对病人的个体化选择的微创热消融技术以及合理联用免疫疗法,将是未来治疗各种恶性肿瘤的必然趋势。
1 Pereira PL. Actual role of radiofrequency ablation of liver metastases[J]. Eur Radiol, 2007, 17(8):2062-2070.
2 Clasen S, Krober SM, Kosan B, et al. Pathomorphologic evaluation of pulmonary radiofrequency ablation: proof of cell death is characterized by DNA fragmentation and apoptotic bodies[J].Cancer, 2008, 113(11):3121-3129.
3 Matzinger P. Tolerance, danger, and the extended family[J]. Annu Rev Immunol, 1994, 12 :991-1045.
4 Matzinger P. The danger model: a renewed sense of self[J].Science, 2002, 296(5566):301-305.
5 Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses[J] . Cryobiology, 2009, 58(1): 1-11.
6 Sabel MS, Su G, Griffith KA, et al. Rate of freeze alters the immunologic response after cryoablation of breast cancer[J]. Ann Surg Oncol, 2010, 17(4):1187-1193.
7 Ali MY, Grimm CF, Ritter M, et al. Activation of dendritic cells by local ablation of hepatocellular carcinoma[J]. J Hepatol, 2005, 43(5): 817-822.
8 Fietta AM, Morosini M, Passadore I, et al. Systemic inflammatoryresponse and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung Cancer[J]. Hum Immunol, 2009, 70(7): 477-486.
9 Jansen MC, van Wanrooy S, van Hillegersberg R, et al. Assessment of systemic inflammatory response (SIR) in patients undergoing radiofrequency ablation or partial liver resection for liver tumors[J].Eur J Surg Oncol, 2008, 34(6): 662-667.
10 Schell SR, Wessels FJ, Abouhamze A, et al. Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors[J]. J Am Coll Surg, 2002, 195(6):774-781.
11 Schälte G, Henzler D, Waning C, et al. Case study of hepatic radiofrequency ablation causing a systemic inflammatory response under total intravenous anesthesia[J]. Korean J Radiol, 2010, 11(6): 640-647.
12 Seifert JK, Morris DL. World survey on the complications of hepatic and prostate cryotherapy[J]. World J Surg, 1999, 23(2):109-113.
13 Weaver ML, Atkinson D, Zemel R. Hepatic cryosurgery in treating colorectal metastases[J]. Cancer, 1995, 76(2):210-214.
14 Seifert JK, France MP, Zhao J, et al. Large volume hepatic freezing :association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model[J]. World J Surg, 2002, 26(11):1333-1341.
15 Chapman WC, Debelak JP, Blackwell TS, et al. Hepatic cryoablation-induced acute lung injury: pulmonary hemodynamic and permeability effects in a sheep model[J]. Arch Surg, 2000,135(6):667-672.
16 Jansen MC, van Hillegersberg R, Schoots IG, et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model[J]. Surgery, 2010, 147(5): 686-695.
17 Gravante G, Sconocchia G, Ong SL, et al. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies[J]. Liver Int, 2009, 29(1): 18-24.
18 Sabel MS, Nehs MA, Su G, et al. Immunologic response to cryoablation of breast cancer[J]. Breast Cancer Res Treat, 2005,90(1):97-104.
19 Osada S, Imai H, Tomita H, et al. Serum cytokine levels in response to hepatic cryoablation[J]. J Surg Oncol, 2007, 95(6): 491-498.
20 Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate Cancer[J]. Cryobiology, 2008, 57(1): 66-71.
21 Yang WL, Nair DG, Makizumi R, et al. Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation[J]. Ann Surg Oncol, 2004, 11(4):399-406.
22 Schueller G, Kettenbach J, Sedivy R, et al. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model[J]. Oncol Rep, 2004, 12(3):495-499.
23 Liu Q, Zhai B, Yang W, et al. Abrogation of local Cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine[J]. Mol Ther, 2009, 17(12): 2049-2057.
24 Rai R, Richardson C, Flecknell P, et al. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA)[J]. J Surg Res, 2005, 129(1):147-151.
25 Solazzo SA, Ahmed M, Schor-Bardach R, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways[J]. Radiology, 2010, 255(1):62-74.
26 Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo[J]. Int J Oncol, 2004, 24(3):609-613.
27 Bhardwaj N, Dormer J, Ahmad F, et al. Heat shock protein 70 expression following hepatic radiofrequency ablation is affected by adjacent vasculature[J]. J Surg Res, 2012, 173(2): 249-257.
28 Ahmad F, Gravante G, Bhardwaj N, et al. Renal effects of microwave ablation compared with radiofrequency, cryotherapy and surgical resection at different volumes of the liver treated[J]. Liver Int,2010, 30(9):1305-1314.
29 Haen SP, Gouttefangeas C, Schmidt D, et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation[J]. Cell Stress Chaperones, 2011, 16(5):495-504.
30 Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses[J]. Cancer Res, 2006, 66(2):1139-1146.
31 Zerbini A, Pilli M, Laccabue D, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response[J]. Gastroenterology, 2010, 138(5): 1931-1942.
32 Dromi SA, Walsh MP, Herby S, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity[J]. Radiology, 2009, 251(1):58-66.
33 Hänsler J, Neureiter D, Strobel D, et al. Cellular and vascular reactions in the liver to radio-frequency thermo-ablation with wet needle applicators. Study on juvenile domestic pigs[J]. Eur Surg Res, 2002, 34(5):357-363.
34 Wissniowski TT, Hänsler J, Neureiter D, et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits[J]. Cancer Res, 2003, 63(19):6496-6500.
35 Hansler J, Wissniowski TT, Schuppan D, et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases[J]. World J Gastroenterol, 2006, 12(23):3716-3721.
36 Hiroishi K, Eguchi J, Baba T, et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrencefree interval after tumor treatment in patients with hepatocellular carcinoma[J]. J Gastroenterol, 2010, 45(4): 451-458.
37 Den Brok MH, Sutmuller RP, Nierkens S, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity[J]. Br J Cancer, 2006, 95(7):896-905.
38 Den Brok MH, Sutmuller RP, Van der Voort R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity[J]. Cancer Res, 2004, 64(11):4024-4029.
39 Levy MY, Sidana A, Chowdhury WH, et al. Cyclophosphamide unmasks an antimetastatic effect of local tumor cryoablation[J]. J Pharmacol Exp Ther, 2009, 330(2):596-601.
40 Todorova VK, Klimberg VS, Hennings L, et al. Immunomodulatory effects of radiofrequency ablation in a breast cancer model[J].Immunol Invest, 2010, 39(1):74-92.
41 Chen Z, Shen S, Peng B, et al. Intratumoural GM-CSF microspheres and CTLA-4 blockade enhance the antitumour immunity induced by thermal ablation in a subcutaneous murine hepatoma model[J]. Int J Hyperthermia, 2009, 25(5):374-382.
42 Udagawa M, Kudo-Saito C, Hasegawa G, et al. Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation[J].Clin Cancer Res, 2006, 12(24):7465-7475.
43 Zhou L, Fu JL, Lu YY, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma[J]. J Gastroenterol, 2010, 45(9):968-978.
44 Duan YQ, Gao YY, Ni XX, et al. Changes in peripheral lymphocyte subsets in patients after partial microwave ablation of the spleen for secondary splenomegaly and hypersplenism: a preliminary study[J].Int J Hyperthermia, 2007, 23(5):467-472.
45 Dong BW, Zhang J, Liang P, et al. Sequential pathological and immunologic analysis of percutaneous microwave coagulation therapy of hepatocellular carcinoma[J]. Int J Hyperthermia, 2003, 19(2):119-133.
46 Zhou P, Liang P, Dong B, et al. Phase Ⅰ clinical study of combination therapy with microwave ablation and cellular immunotherapy in hepatocellular carcinoma[J]. Cancer Biol Ther,2011, 11(5):450-456.
Advances in thermal ablation therapy for regulating anti-tumor immunity
LIN Yan, LIANG Ping
Department of Intervention Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
Corresponding author: LIANG Ping. Email: liangping301@hotmail.com
Image-guided thermal ablation technique plays an important role in treatment of hepatic and renal tumors. Thermal ablation technique can activate the anti-tumor immunity in vivo. However, the immune response of patients to them cannot completely eliminate the tumor or prevent its relapse. Thermal ablation should therefore be applied in combination with other immune-regulating therapies in order to bring its effect into full play.
thermal ablation; immuneregulation; antigen; immunotherapy
R 445.1
A
2095-5227(2014)05-0509-04
10.3969/j.issn.2095-5227.2014.05.031
时间:2014-02-13 10:13
http://www.cnki.net/kcms/detail/11.3275.R.20140213.1013.003.html
2013-11-18
国家科技部国际科技合作项目(2012DFG32070)
Supported by International S&T Cooperation Program of China(2012DFG 32070)
林燕,女,在读博士。研究方向:肝癌热消融与肿瘤免疫。Email: linyan_911@hotmail.com
梁萍,女,主任医师,教授,博士生导师,主任。Email:liangping301@hotmail.com