基于模糊综合评价的国际工程项目政治风险评价研究

2014-03-31 15:27何卓
经济师 2014年2期
关键词:模糊综合评价

何卓

摘 要:针对国际工程项目政治风险评价问题,研究国际工程项目政治风险内涵及表现形式,从政治风险的作用范围和产生原因的角度出发,对政治风险进行了分类。指出政治风险评价中的关键评价指标,提出国际工程项目政治风险评价体系,最后建立基于模糊综合评价的国际工程项目政治风险评价模型并进行仿真实验。

关键词:模糊综合评价 国际工程项目 政治风险

中图分类号:F280 文献标识码:A

文章编号:1004-4914(2014)02-058-03

政治风险作为国际工程项目实施中面临的系统性风险中的一种主要风险,具有一定的特殊性,而国际工程项目往往投资及规模巨大,风险一旦产生,将给承包企业带来无法承受的损失。因此,研究政治风险的产生及影响,建立政治风险识别和评价模型对国际工程项目的有效管理和承包商的投标决策具有极其重要的意义。常见的国际工程项目风险识别评价模型主要有:期望值法、专家经验法、模糊综合评价法、层次分析法、BP神经网络综合评价法等。国内许多优秀的学者运用这些理论在国际工程项目风险评价方面取得了许多优秀的成果,而针对国际工程项目政治风险的研究比较少。本文在这里提出一种针对国际工程项目政治风险评价的方法,为国际工程承包企业项目决策和实施提供参考。

一、国际工程项目政治风险评价指标体系

(一)国际工程项目政治风险概念及类型

对于政治风险的概念和涵义,站在不同的角度和基点有不同的理解。国际工程项目政治风险是指国际工程承包项目因主权国家决策或行为、社会事件或社会条件变化而造成工程承包商遭受损失的可能性。它是一种国家风险,国际承包工程系统将政治风险分为战争、内乱、政权更迭、国有化没收外资、拒付债务、政府干预等。

从政治风险的作用范围来看,可以把政治风险分为宏观政治风险和微观政治风险两大类。其中宏观政治风险作用于项目所在主权国家所有的承包企业;而微观政治风险则作用于项目所在主权国家的某些承包企业;同时,从政治风险所产生的原因上来看,政治风险又可以分为由政府决策和行为引起以及由社会事件和条件变化引起两大类。所以,又可以将政治风险分为以下四种主要类型:(1)政府宏观政治风险;(2)社会宏观政治风险;(3)政府微观政治风险;(4)社会微观政治风险。

政府宏观政治风险主要包括对主权国家内所有跨国承包项目实行征用、没收、国有化或限制承包企业本金及收益汇回等。社会宏观政治风险主要包括政权更迭、内乱等。政府微观政治风险主要包括政府非法解除项目协议或违反合同条款、选择性征用和国有化、实行歧视性扣押或税收等。社会微观政治风险主要包括针对性的恐怖袭击、针对性的罢工、抗议示威等。

(二)国际工程项目政治风险评价指标体系的建立

随着现阶段国际形势的相对稳定,战争已是极其偶然的事件,内乱也只在极少数国家出现;而国际法律制度的不断完善,也使得东道国公开征收和国有化国际工程项目以及针对承包企业完全的外汇管制等现象不再常见。选择国际工程项目政治风险关键评价指标,构建评价指标体系应当遵循一定的原则。本文以政治风险概念界定为基础,剖析造成造成主权国决策或行为、社会事件或社会条件变化的原因,注重评价效果以及评价效率,选取的评价指标尽量为主权国家本质内在并且不会随其他因素的变化而变化。根据国际工程项目本身的特点参照上述原则,建立国际工程项目政治风险评价指标体系(表1)。

二、国际工程项目政治风险模糊综合评价

(一)模糊综合评价模型结构

模糊数学综合评价能够将事物的不确定性和模糊性量化,通过运用数学知识科学分析多个因素对评价对象隶属等级关系进行综合性评价,是一门应用十分广泛的科学分析工具。国际工程项目主体之间在语言、文化、环境等方面的差异带来了项目实施的复杂性和不确定性,政治风险评价因素的复杂性、评价标准存在的模糊性与模糊综合评价方法的适用性非常契合。模糊综合评价方法能够使得定性和定量因素相结合,解决政治风险评价信息量大的问题,评价结论可信。具体评价过程如下:

1.根据专家意见针对项目实际结合国际工程项目特点对各个指标进行定量估算,建立评价指标集和评语集以及各指标权重分配模糊向量A,表示如下:

U={u1,u2,…,um};V={v1,v2,…,vn};A={a1,a2,…,am}

其中,m、n分别表示指标项目数和评语等级数,向量A满足■ai=1。

2.运用层次分析法确定指标集U中各影响项目政治风险因素的权重ai(i=1,2,…,m),具体做法如下:

(1)根据专家打分,将各指标按影响程度作两两重要性比较。设评判指标集合为T={t1,t2,…,tn},设判断矩阵aij(aij>0)代表ti对tj的重要性。判断矩阵aij的标度方法选用1~9比例标度法。

(2)使用根法计算下层指标对上层指标的权重值,具体做法如下:

先对上一部种判断矩阵aij中各行元素的乘积,记为Mi=■aij;然后求Mi的n次方根,记为wˉi=■;接着归一化或正规化处理wˉi,处理公式为wi=wˉi■wˉi;最后检验归一化处理后的数值是否满足一致性,若满足则以此作为该层指标对上层指标的权重值。

3.对每一个影响因素根据评判集中的等级指标进行模糊评价,得到项目政治风险评判矩阵R,表示如下:

4.进行各评价指标权重分配模糊向量A与对应的模糊评价矩阵R之间的模糊矩阵合并运算,得到工程项目政治风险的评价指标综合评价模糊向量B,经归一化处理后得Bˉ,表示如下:

B=A×R={b1,b2,…,bm},Bˉ={bˉ1,bˉ2,…,bˉm}

(二)仿真实验

以某个跨国公司在非洲某国的一个国际工程项目为例,利用本文提出的评价方法进行项目的政治风险评价。根据9位具有丰富经验的专家就文章提出的指标结合工程所在主权国家实际进行打分,令评语集为{最大风险、较大风险、一般大风险、适中风险、较小风险},量化专家评分后得到一级评价指标权重为:(0.20,0.18,0.21,0.17,0.11,0.13),二级指标权重为:endprint

(0.35,0.33,0.32,0.45,0.55,0.21,0.20,

0.28,0.31,0.30,0.30,0.40,0.50,0.50,

0.60,0.40)。

1.构建二级指标评判矩阵,有:

S=0.25 0.22 0.18 0.25 0.100.30 0.25 0.22 0.12 0.110.20 0.25 0.25 0.15 0.15

2.分别对二级评价指标进模糊变换,有:

R1=W1×S1=(0.35,0.33,0.32)×

0.25 0.22 0.18 0.25 0.100.30 0.25 0.22 0.12 0.110.20 0.25 0.25 0.15 0.15

=(0.25,0.24,0.22,0.18,0.12)

同理,有:

R2=(0.23,0.21,0.24,0.19,0.13)

R3=(0.21,0.23,0.22,0.18,0.14)

R4=(0.21,0.24,0.25,0.16,0.14)

R5=(0.20,0.19,0.26,0.20,0.17)

R6=(0.24,0.21,0.25,0.17,0.13)

于是,有:R=

0.25 0.24 0.22 0.18 0.120.23 0.21 0.24 0.19 0.130.21 0.23 0.22 0.18 0.140.21 0.24 0.25 0.16 0.140.20 0.19 0.26 0.20 0.170.24 0.21 0.25 0.17 0.13

3.进行一级指标模糊综合变换,有:

B=A×R=

(0.20,0.18,0.21,0.17,0.11,0.13)

×0.25 0.24 0.22 0.18 0.120.23 0.21 0.24 0.19 0.130.21 0.23 0.22 0.18 0.140.21 0.24 0.25 0.16 0.140.20 0.19 0.26 0.20 0.170.24 0.21 0.25 0.17 0.13

=(0.22,0.22,0.24,0.18,0.14)

(下转第62页)(上接第59页)

由于■bi=1,其中(i=1,2,3,4,5),故无须归一化处理。根据最大隶属度原则,此国际工程项目的政治风险等级为一般。

三、结束语

政治风险是国际工程项目面临的主要风险之一。本文针对政治风险评价,提出基于模糊综合评价的国际工程项目政治风险评价方法,运用模型进行仿真实验,证明该方法在有效评价政治风险方面可靠、可行,可为国际工程承包企业项目决策和实施提供参考。

参考文献:

[1] 徐阳.国际承包工程面临的风险及对策[J].国际经济合作,2001(1)

[2] 胡文发.基于BP算法的国际工程项目政治风险评级模型[J].重庆建筑大学学报,2006(4)

[3] 邵军义,董坤晗等.国际工程项目风险评价研究[J].工程管理学报,2011(2)

[4] 林飞腾,侯渡舟.国际工程承包中的项目风险模糊层次分析[J].西安建筑科技大学学报(自然科学版),2003(1)

[5] 朱毅,李吉勤,魏焱等.基于总承包商视角的EPC国际工程风险因素分级研究[J].工程管理学报,2012(5)

[6] 李寿双,周双庆.国际直接投资的政治风险及其法律应对——以国际直接投资保险制度为例[J].学术论坛,2003(5)

[7] 杨学进.浅析国家政治风险评价对象[J].中国经贸,2001(5)

[8] 杜栋,庞庆华,吴炎.现代综合评价方法与案例精选(第二版)[M].北京:清华大学出社,2008

(作者单位:长沙理工大学交通运输工程学院 湖南长沙 410004)

(责编:贾伟)endprint

(0.35,0.33,0.32,0.45,0.55,0.21,0.20,

0.28,0.31,0.30,0.30,0.40,0.50,0.50,

0.60,0.40)。

1.构建二级指标评判矩阵,有:

S=0.25 0.22 0.18 0.25 0.100.30 0.25 0.22 0.12 0.110.20 0.25 0.25 0.15 0.15

2.分别对二级评价指标进模糊变换,有:

R1=W1×S1=(0.35,0.33,0.32)×

0.25 0.22 0.18 0.25 0.100.30 0.25 0.22 0.12 0.110.20 0.25 0.25 0.15 0.15

=(0.25,0.24,0.22,0.18,0.12)

同理,有:

R2=(0.23,0.21,0.24,0.19,0.13)

R3=(0.21,0.23,0.22,0.18,0.14)

R4=(0.21,0.24,0.25,0.16,0.14)

R5=(0.20,0.19,0.26,0.20,0.17)

R6=(0.24,0.21,0.25,0.17,0.13)

于是,有:R=

0.25 0.24 0.22 0.18 0.120.23 0.21 0.24 0.19 0.130.21 0.23 0.22 0.18 0.140.21 0.24 0.25 0.16 0.140.20 0.19 0.26 0.20 0.170.24 0.21 0.25 0.17 0.13

3.进行一级指标模糊综合变换,有:

B=A×R=

(0.20,0.18,0.21,0.17,0.11,0.13)

×0.25 0.24 0.22 0.18 0.120.23 0.21 0.24 0.19 0.130.21 0.23 0.22 0.18 0.140.21 0.24 0.25 0.16 0.140.20 0.19 0.26 0.20 0.170.24 0.21 0.25 0.17 0.13

=(0.22,0.22,0.24,0.18,0.14)

(下转第62页)(上接第59页)

由于■bi=1,其中(i=1,2,3,4,5),故无须归一化处理。根据最大隶属度原则,此国际工程项目的政治风险等级为一般。

三、结束语

政治风险是国际工程项目面临的主要风险之一。本文针对政治风险评价,提出基于模糊综合评价的国际工程项目政治风险评价方法,运用模型进行仿真实验,证明该方法在有效评价政治风险方面可靠、可行,可为国际工程承包企业项目决策和实施提供参考。

参考文献:

[1] 徐阳.国际承包工程面临的风险及对策[J].国际经济合作,2001(1)

[2] 胡文发.基于BP算法的国际工程项目政治风险评级模型[J].重庆建筑大学学报,2006(4)

[3] 邵军义,董坤晗等.国际工程项目风险评价研究[J].工程管理学报,2011(2)

[4] 林飞腾,侯渡舟.国际工程承包中的项目风险模糊层次分析[J].西安建筑科技大学学报(自然科学版),2003(1)

[5] 朱毅,李吉勤,魏焱等.基于总承包商视角的EPC国际工程风险因素分级研究[J].工程管理学报,2012(5)

[6] 李寿双,周双庆.国际直接投资的政治风险及其法律应对——以国际直接投资保险制度为例[J].学术论坛,2003(5)

[7] 杨学进.浅析国家政治风险评价对象[J].中国经贸,2001(5)

[8] 杜栋,庞庆华,吴炎.现代综合评价方法与案例精选(第二版)[M].北京:清华大学出社,2008

(作者单位:长沙理工大学交通运输工程学院 湖南长沙 410004)

(责编:贾伟)endprint

(0.35,0.33,0.32,0.45,0.55,0.21,0.20,

0.28,0.31,0.30,0.30,0.40,0.50,0.50,

0.60,0.40)。

1.构建二级指标评判矩阵,有:

S=0.25 0.22 0.18 0.25 0.100.30 0.25 0.22 0.12 0.110.20 0.25 0.25 0.15 0.15

2.分别对二级评价指标进模糊变换,有:

R1=W1×S1=(0.35,0.33,0.32)×

0.25 0.22 0.18 0.25 0.100.30 0.25 0.22 0.12 0.110.20 0.25 0.25 0.15 0.15

=(0.25,0.24,0.22,0.18,0.12)

同理,有:

R2=(0.23,0.21,0.24,0.19,0.13)

R3=(0.21,0.23,0.22,0.18,0.14)

R4=(0.21,0.24,0.25,0.16,0.14)

R5=(0.20,0.19,0.26,0.20,0.17)

R6=(0.24,0.21,0.25,0.17,0.13)

于是,有:R=

0.25 0.24 0.22 0.18 0.120.23 0.21 0.24 0.19 0.130.21 0.23 0.22 0.18 0.140.21 0.24 0.25 0.16 0.140.20 0.19 0.26 0.20 0.170.24 0.21 0.25 0.17 0.13

3.进行一级指标模糊综合变换,有:

B=A×R=

(0.20,0.18,0.21,0.17,0.11,0.13)

×0.25 0.24 0.22 0.18 0.120.23 0.21 0.24 0.19 0.130.21 0.23 0.22 0.18 0.140.21 0.24 0.25 0.16 0.140.20 0.19 0.26 0.20 0.170.24 0.21 0.25 0.17 0.13

=(0.22,0.22,0.24,0.18,0.14)

(下转第62页)(上接第59页)

由于■bi=1,其中(i=1,2,3,4,5),故无须归一化处理。根据最大隶属度原则,此国际工程项目的政治风险等级为一般。

三、结束语

政治风险是国际工程项目面临的主要风险之一。本文针对政治风险评价,提出基于模糊综合评价的国际工程项目政治风险评价方法,运用模型进行仿真实验,证明该方法在有效评价政治风险方面可靠、可行,可为国际工程承包企业项目决策和实施提供参考。

参考文献:

[1] 徐阳.国际承包工程面临的风险及对策[J].国际经济合作,2001(1)

[2] 胡文发.基于BP算法的国际工程项目政治风险评级模型[J].重庆建筑大学学报,2006(4)

[3] 邵军义,董坤晗等.国际工程项目风险评价研究[J].工程管理学报,2011(2)

[4] 林飞腾,侯渡舟.国际工程承包中的项目风险模糊层次分析[J].西安建筑科技大学学报(自然科学版),2003(1)

[5] 朱毅,李吉勤,魏焱等.基于总承包商视角的EPC国际工程风险因素分级研究[J].工程管理学报,2012(5)

[6] 李寿双,周双庆.国际直接投资的政治风险及其法律应对——以国际直接投资保险制度为例[J].学术论坛,2003(5)

[7] 杨学进.浅析国家政治风险评价对象[J].中国经贸,2001(5)

[8] 杜栋,庞庆华,吴炎.现代综合评价方法与案例精选(第二版)[M].北京:清华大学出社,2008

(作者单位:长沙理工大学交通运输工程学院 湖南长沙 410004)

(责编:贾伟)endprint

猜你喜欢
模糊综合评价
一种高职院校助学金评定的数学模型