肖 寒 靳 青,2 刘桂芬,2 万发春,2 刘晓牧,2*
(1.山东省畜禽疫病防治与繁育重点实验室,济南 250100;2.山东省农业科学院畜牧兽医研究所,济南 250100)
维生素A能够促进视觉发育、提高免疫力,对于细胞的自动调节和胚胎发育也有很重要的作用。维生素A缺乏能够导致失明,增加动物在幼年时的发病率。由于β-胡萝卜素具有维生素A原的活性,所以在很多国家,β-胡萝卜素被当成动物和人获取维生素A的主要食物来源。β-胡萝卜素在各种酶的作用下被转化成多种代谢产物,其中最常见的有2种酶,它们分别是β-胡萝卜素-15,15'-加氧酶(β-carotene-15,15'-momoxygenase 1,BCMO1)和 β-胡萝卜素-9',10'-双加氧脱氢酶(β-carotene-9',10'-dioxygenase,BCDO2)。目前,国内外的研究主要集中在BCMO1上,而对于BCDO2的研究涉及较少。这2种酶的研究对象主要为人、小鼠、斑马鱼等,在牛、羊、鸡等畜禽中的研究相对较少,只局限于由基因突变引起的单核苷酸多态性的研究。本文对这2种酶的一系列相关特性进行了综述,并对其应用前景进行了展望,以期对营养调控、各类疾病诊断与预防提供一定的参考。
以往的研究认为,BCMO1是维生素A代谢过程中的一种最关键的酶,它能够通过对称性裂解将β-胡萝卜素在15',15'键位置断开,生成2分子的全反式视黄醛,最后生成视黄酸或维生素A。BCMO1的活性中心存在4个保守的组氨酸残基(His172、His237、His308、His514),此酶必须通过亚铁离子与4个残基、水、氧分子连接,组成一个特殊的八面体结构才具有活性[1-2]。人体所吸收β-胡萝卜素的35%~88%都是在BCMO1的作用下形成相应的代谢产物[3]。Hessel等[4]在敲除小鼠BCMO1的试验中发现,BCMO1功能的缺失能够导致维生素A缺乏,当进一步喂食富含β-胡萝卜素的饲粮后,在小鼠的肝脏、肺脏和脂肪组织均有大量的 β-胡萝卜素积累[5-6]。由此可见BCMO1是β-胡萝卜素转化成维生素A过程中最关键的酶。
而另一种酶BCDO2则通过非对称性裂解在β胡萝卜素的9',10'双键位置断开,生成β-阿朴-10'-胡萝卜醛和β-紫罗酮,其中β-阿朴-10'-胡萝卜醛又经历了一系列类似β-氧化的途径生成视黄酸[7-9]。小鼠的敲除试验表明,在敲除BCMO1而BCDO2表达良好的情况下,仍能够导致维生素A的缺乏,说明BCDO2对于β-胡萝卜素转化成维生素A没有直接的影响。但在补充适量的BCMO1后,BCDO2也会对维生素A的生成起到非常重要的作用。这是由于BCMO1功能的缺失能够导致BCDO2的表达量急剧上升[10],其代谢产物阿朴胡萝卜醛也大量积累[11],在补充适量的BCMO1后,此酶能够以 β-胡萝卜素、β-阿朴-10’-胡萝卜醛为底物生成维生素 A[12]。此外,其代谢产物β-阿朴-14'-胡萝卜醛还能抑制维甲酸X受体α(RXRα)、过氧化物酶体激活受体α(PPAR-α)、过氧化物酶体激活受体 γ(PPAR-γ)的转录活性和生物学反应[13]。最近的研究表明,BCDO2在类胡萝卜素可能诱发的线粒体功能紊乱中起保护作用[14]。Lobo 等[15]在对斑马鱼和人类细胞系的试验中证明,BCDO2对于类胡萝卜素积累引发的氧化应激和细胞凋亡能够起到缓解作用。Yu等[16]对斑马鱼和小鼠进行了 BCDO2的敲除试验,结果证实了此酶与贫血密切相关,对类胡萝卜素分解代谢和维持体内平衡也有很重要的影响。
BCMO1是一种细胞溶质蛋白质并存在于细胞质,BCDO2是一种存在于线粒体的蛋白质。亚细胞定位的不同决定了它们的底物特异性和不同的生物学功能。BCMO1具有比较专一的底物特异性,作为BCMO1的反应底物含有至少1个不被代替的β-紫罗酮环,甲基团在多烯链上的位置也很重要[17-18],这就决定了 BCMO1的底物只局限于α-胡萝卜素、β-胡萝卜素、β-阿朴胡萝卜醛、β隐黄素等[18]。Kim 等[19]发现鸡中 BCMO1 对不同底物的特异性结合能力有很大差别,由强到弱分别是:β-胡萝卜素、β-玉米黄素、β-阿朴-8'-胡萝卜醛、β-阿朴-4'-胡萝卜醛、α-胡萝卜素、γ-胡萝卜素。与BCMO1相比,BCDO2则具有更广泛的底物。BCDO2是作为β-胡萝卜素和番茄红素的催化酶首次被发现的[20]。随着研究的不断深入,Mein等[21]发现,凡是 3'端带有羟基紫罗酮环的类胡萝卜素都可以作为BCDO2的底物,如β-玉米黄素、叶黄素等。
目前已在人类和许多物种中检测到了这2种酶的活性[3]。早期研究只是在多种哺乳动物的肠黏膜中检测到了BCMO1的活性,包括人、大鼠、小鼠、豚鼠、猴 子、兔子等[22-23]。随后,Lindqvist等[22]证明BCMO1基因不仅存在于消化道中,在胃、小肠、结肠的黏膜细胞和腺细胞中也有表达;在肝脏细胞、胰岛外分泌腺细胞、视网膜色素上皮细胞及睫状体色素上皮细胞中也检测到了它的活性。在子宫内膜和乳腺组织、肾脏组织、皮肤角化细胞鳞状组织、前列腺腺体、肾上腺也表达[24]。BCDO2在BCMO1所表达的各类细胞和组织中大多都表达,但表达量相对较少[25]。目前已检测到了BCDO2在小鼠、大鼠和雪貂体内的组织特异性表达[26]。
这2种酶均在肝脏中表达,但存在于不同类型的肝脏细胞中。肝脏细胞有一种类型叫储脂细胞,负责维甲酸的存储,BCMO1在此类细胞中高度表达[10]。Kim 等[27]发现,BCMO1 通过影响视黄醇酰基转移酶来调节胚胎中维甲酸的新陈代谢,进而在胚胎形成中起到至关重要的作用。小鼠的BCMO1敲除不仅能造成维生素A缺乏,还会导致脂肪肝的形成[4],这是由于BCMO1能够阻止PPAR-γ引起的脂肪沉积[28],能够起到调节脂类代谢的作用。Amengual等[12]的试验证明在补充了β-胡萝卜素和有活性的BCMO1后,小鼠体内的脂肪明显减少,进一步巩固了上述观点。另一种类型肝脏细胞叫薄壁实质细胞,它的作用是集中吸收和处理视黄醇,在这种细胞中检测到了BCDO2的活性[10]。Mantena 等[29]在试验中发现,BCDO2的敲除也能够导致脂肪肝的形成,并且BCDO2和它的代谢产物对PPAR-γ的活性均无影响。这是因为BCDO2是一种存在于线粒体的蛋白质,它的缺失能引起线粒体功能紊乱和氧化应激,最终导致脂肪肝的形成。
Lakshman 等[30]和 Hosotani等[31]发现,在饲粮中增加脂肪的含量和脂肪的成分能够提高动物对β-胡萝卜素的吸收,进一步提高BCMO1的活性。后来有学者在鼠类和人类的BCMO1中发现了一种PPAR应答元件(PPAR-responsive element,PPRE),此元件能够激活PPAR的活性来调控脂肪代谢的过程,进一步证实了脂肪代谢与BCMO1的表达活性有着紧密的联系[32]。此外,BCMO1启动子区域还编码一种功能性肌细胞增强子2(MEF2),它能够与 PPAR-γ协同互作来激活BCMO1的活性[33]。BCDO2则通过其代谢产物阿朴-胡萝卜醛来影响PPAR的信号转导,证据表明BCDO2的代谢产物能够抑制PPAR-α和PPAR-γ的表达活性[28]。在喂食大量的番茄红素后,发现大鼠体内有大量的阿朴胡萝卜醛,并在大鼠的肾脏和肾上腺检测到PPAR-γ的mRNA水平明显降低[34]。同样在大量喂食玉米黄质后,小鼠肝脏中BCDO2的mRNA水平要比对照组多出7倍[14]。
ISX是一种能够调控BCMO1表达的调控因子,首次是在小鼠的小肠中被检测出来的[35]。Zaripheh 等[34]和 Seino 等[35]在试验中发现维生素 A的缺乏不仅能够导致BCMO1的表达量增高,还能够降低ISX的活性。在ISX启动子区域存在一种叫RAR的基因,能够与视黄酸应答元件(RA-responsive elements,RARE)相连接,催化视黄酸激活ISX。ISX的激活导致BCMO1表达量的减少从而控制β-胡萝卜素的吸收,对维生素A的生成起到负反馈调节的作用[36]。
关于BCMO1的单核苷酸多态性已被国内外多次报道过,其中人类BCMO1中的一种丝氨酸T170非常重要,因为它在哺乳动物中的类胡萝卜素切割酶家族中都是高度保守的[37]。除此之外,2种色氨酸Y235和Y326对于小鼠的BCMO1也非常重要[38],其中Y235在切割酶家族中是完全保守的。
有关BCDO2的单核苷酸多态性已在牛、羊、鸡等多种动物上报道[39-41]。其中牛BCDO2基因中W80的无义突变能够使皮下脂肪和牛奶变成黄色,是由于该突变能够导致极少量的β-胡萝卜素被分解,而较多的β-胡萝卜素则通过肠上皮细胞转移并大量沉淀在脂肪组织,形成黄脂[39]。Q66的无义突变已在羊的BCDO2基因上报道,Vage等[40]在85%的黄脂小羊羔中都检测到了Q66的无义突变,此外,在羊的体内发现了2种影响脂肪颜色潜在的单核苷酸多态性,一种是在编码BCDO2蛋白质第315个氨基酸的位置发现了纯合的苯丙氨酸残基,另一种是在第422个氨基酸的位置发现了杂合的异亮氨酸残基[40-41]。Eriksson等[41]发现,鸡中1个或多个顺式反应和组织特异性的调节突变能抑制BCDO2的表达,导致黄色皮肤的形成。
小鼠的敲除试验显示,BCMO1是β-胡萝卜素转化成维生素A过程中最关键的酶,而BCDO2没有起到明显的作用。BCMO1除了用于维生素A的生成,还能调节胚胎的正常发育,在脂类代谢过程中也是很重要的调控因子,但是此酶在调控2种生物途径中具体的分子机制尚不明确,大量相关的科学研究还需要进行。目前为止,BCDO2的作用和调控机制还不是很清楚,但有关研究表明,此酶的缺失能够导致动物在幼年时期贫血的发生,因此初步推测,BCDO2与血细胞的生成与凋亡有着直接的关系。BCDO2功能的缺失还能导致脂肪肝,很可能是由于BCDO2敲除能够诱发线粒体功能紊乱和氧化应激而扰乱体内平衡,但此酶与脂肪肝形成之间具体的联系和分子机制还有待进一步研究。之前的小鼠敲除试验还发现,BCMO1的敲除能够导致BCDO2的表达量大幅度增加,这2种酶之间存在千丝万缕的联系。因此,需要开展更多的科学研究来阐明这2种酶的相互作用和它们对于哺乳动物的重要作用。
致谢:
感谢山东省农科院畜牧兽医研究所刘倚帆博士对文稿所提出的宝贵意见。
[1] POLIAKOV E,GENTLEMAN S,CUNNINGHAM F X,et al.Key role of conserved histidines in recombinant mouse β-carotene 15,15'-mono-oxygenase-1 activity[J].The Journal of Biological Chemistry,2005,280(32):29217-29223.
[2] KLOER D P,SCHULZ G E.Structural and biological aspects of carotenoid cleavage[J].Cellular and Molecular Life Sciences,2006,63(19/20):2291-2303.
[3] LIETZ G,LANGE J,RIMBACH G.Molecular and dietary regulation ofβ,β-carotene 15,15'-monooxygenase 1(BCMO1)[J].Archives of Biochemistry and Biophysics,2010,502(1):8-16.
[4] HESSEL S,EICHINGER A,ISKEN A,et al.CMO1 deficiency abolishes vitamin A production fromβ-carotene and alters lipid metabolism in mice[J].The Journal of Biological Chemistry,2007,282(46):33553-33561.
[5] AMENGUAL J,GOURANTON E,VAN HELDEN Y G J,et al.Beta-carotene reduces body adiposity of mice via BCMO1[J].PLoS One,2011,6:e20644.
[6] OLSON JA.Provitamin A function of carotenoids:the conversion ofβ-carotene into vitamin A[J].Journal of Nutrition,1989,119:105-108.
[7] WANG X D,RUSSELL R M,LIU C,et al.β-Oxidation in rabbit liver in vitro and in the perfused ferret liver contributes to retinoic acid biosynthesis fromβapocarotenoic acids[J].The Journal of Biological Chemistry,1996,271(43):26490-26498.
[8] WOLF G,PHIL D.The enzymatic cleavage ofβ-carotene:still controversial[J].Nutrition Reviews,1995,53(5):134-137.
[9] WYSS A.Carotene oxygenases:a new family of double bond cleavage enzymes[J].The Journal of Nutrition,2004,134(1):246S-250S.
[10] SHMARAKOV I,FLESHMAN M K,D’AMBROSIO D N,et al.Hepatic stellate cells are an important cellular site for β-carotene conversion to retinoid[J].Archives of Biochemistry and Biophysics,2010,504(1):3-10.
[11] VOGEL J T,TAN B C,MCCARTY D R,et al.The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity,cleaving multiple carotenoids at two different bond positions[J].The Journal of Biological Chemistry,2008,283(17):11364-11373.
[12] AMENGUAL J,WIDJAJA-ADHI M A K,RODRIGUEZ-SANTIAGO S,et al.Two carotenoid oxygenases contribute to mammalian provitamin A metabolism[J].The Journal of Biological Chemistry,2013,288(47):34081-34096.
[13] SHE H Y,XIONG S G,HAZRA S,et al.Adipogenic transcriptional regulation of hepatic stellate cells[J].The Journal of Biological Chemistry,2005,280(6):4959-4967.
[14] AMENGUAL J,LOBO G P,GOLCZAK M,et al.A mitochondrial enzyme degrades carotenoids and protects against oxidative stress[J].The FASEB Journal,2011,25(3):948-959.
[15] LOBO G P,ISKEN A,HOFF S,et al.BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway[J].Development,2012,139(16):2966-2977.
[16] YU D N,DOS SANTOS C O,ZHAO G W,et al.miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ[J].Genes & Development,2010,24(15):1620-1633.
[17] VON LINTIG J,HESSEL S,ISKEN A,et al.Towards a better understanding of carotenoid metabolism in animals[J].Biochimica et Biophysica Acta(BBA):Molecular Basis of Disease,2005,1740(2):122-131.
[18] WIRTZ G M,BORNEMANN C,GIGER A,et al.The substrate specificity ofβ,β-carotene 15,15'-monooxygenase[J].Helvetica Chimica Acta,2001,84(8):2301-2315.
[19] Kim Y S,OH D K.Substrate specificity of a recombinant chicken β-carotene 15,15'-monooxygenase that converts β-carotene into retinal[J].Biotechnology Letters,2009,31(3):403-408.
[20] KIEFER C,HESSEL S,LAMPERT J M,et al.Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A[J].Journal of Biological Chemistry,2001,276(17):14110-14116.
[21] MEIN J R,DOLNIKOWSKI G G,ERNST H,et al.Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein,zeaxanthin and β-cryptoxanthin by ferret carotene-9',10'-monooxygenase[J].Archives of Biochemistry and Biophysics,2011,506(1):109-121.
[22] DUSZKA C,GROLIER P,AZIM E M,et al.Rat intestinalβ-carotene dioxygenase activity is located primarily in the cytosol of mature jejunal enterocytes[J].Journal of Nutrition,1996,126:2550-2556.
[23] LINDQVIST A,ANDERSSON S.Biochemical properties of purified recombinant human beta-carotene 15,15'-monooxygenase[J].Journal of Biological Chemistry,2002,277(26):23942-23948.
[24] LINDQVIST A,ANDERSSON S.Cell type-specific expression of β-carotene 15,15'-mono-oxygenase in human tissues[J].Journal of Histochemistry & Cytochemistry,2004,52(4):491-499.
[25] LINDQVIST A,HE Y G,ANDERSSON S.Cell typespecific expression of β-carotene-9',10'-monooxygenase in human tissues[J].Journal of Histochemistry& Cytochemistry,2005,53(11):1403-1412.
[26] LUVIZOTTO R A,NASCIMENTO A F,VEERAMACHANENI S,et al.Chronic alcohol intake upregulates hepatic expression of carotenoid cleavage enzymes and PPAR in rats[J].The Journal of Nutrition,2010,140(10):1808-1814.
[27] KIM Y K,WASSEF L,CHUNG S,et al.β-carotene and its cleavage enzyme β-carotene 15,15'-oxygenase(CMOI)affect retinoid metabolism in developing tissues[J].The FASEB Journal,2011,25(5):1641-1652.
[28] ZIOUZENKOVA O,ORASANU G,SHARLACH M,et al.Retinaldehyde represses adipogenesis and diet-induced obesity[J].Nature Medicine,2007,13(6):695-702.
[29] MANTENA SK,KING A L,ANDRINGA K K,et al.Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol-and obesity-induced fatty liver diseases[J].Free Radical Biology and Medicine,2008,44(7):1259-1272.
[30] LAKSHMAN M R,LIU Q H,SAPP R,et al.The effects of dietary taurocholate,fat,protein,and carbohydrate on the distribution and fate of dietaryβ-carotene in ferrets[J].Nutrition and Cancer,1996,26(1):49-61.
[31] HOSOTANI K,KITAGAWA M.Effects of dietary protein,fat and beta-carotene levels on beta-carotene absorption in rats[J].International Journal for Vitamin and Nutrition Research,2005,75(4):274-280.
[32] BOULANGER A,MCLEMORE P,COPELAND N G,et al.Identification of beta-carotene 15,15'-monooxygenase as a peroxisome proliferator-activated receptor target gene[J].The FASEB Journal,2003,17(10):1304-1306.
[33] GONG X,TSAI S W,YAN B,et al.Cooperation between MEF2 and PPARgamma in human intestinal beta,beta-carotene 15,15'-monooxygenase gene expression[J].BMC Molecular Biology,2006,7:7.
[34] ZARIPHEH S,NARA T Y,NAKAMURA M T,et al.Dietary lycopene downregulates carotenoid 15,15'-monooxygenase and PPAR-gamma in selected rat tissues[J].The Journal of Nutrition,2006,136(4):932-938.
[35] SEINO Y,MIKI T,KIYONARI H,et al.ISX participates in the maintenance of vitamin A metabolism by regulation of β-carotene 15,15'-monooxygenase(BCMO1)expression[J].The Journal of Biological Chemistry,2008,283(8):4905-4911.
[36] LOBO G P,HESSEL S,EICHINGER A,et al.ISX is a retinoic acid-sensitive gatekeeper that controls intestinalβ,β-carotene absorption and vitamin A production[J].The FASEB Journal,2010,24(6):1656-1666.
[37] LINDQVIST A,SHARVILL J,SHARVILL D E,et al.Loss-of-function mutation in carotenoid 15,15'-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A[J].The Journal of Nutrition,2007,137(11):2346-2350.
[38] POLIAKOV E,GENTLEMAN S,CHANDER P,et al.Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouseβ-carotene 15,15'-monooxygenase[J].BMC Biochemistry,2009,10:31.
[39] TIAN R,PITCHFORD W S,MORRIS C A,et al.Genetic variation in the β,β-carotene-9',10'-dioxygenase gene and association with fat colour in bovine adipose tissue and milk[J].Animal Genetics,2010,41(3):253-259.
[40] VÅGE D I,BOMAN I A.A nonsense mutation in the beta-carotene oxygenase 2(BCO2)gene is tightly associated with accumulation of carotenoids in adipose tissue in sheep(Ovis aries)[J].BMC Genetics,2010,11:10.
[41] ERIKSSON J,LARSON G,GUNNARSSON U,et al.Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken[J].PLoS Genetics,2008,4(2):e1000010.