大数据时代的企业信息安全保障

2014-03-20 21:38:58曾中良
网络安全技术与应用 2014年8期
关键词:数据安全

曾中良

(中国烟草总公司云南省公司信息中心 云南 650031)

0 引言

对于“大数据”(Big data),研究机构Gartner给出了这样的定义:“大数据”是需要在新型处理模式下才能具备更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

从技术上看,大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘(SaaS),但它必须依托云计算的分布式处理、分布式数据库(PaaS)和云存储、虚拟化技术(IaaS)。

1 大数据的特点

大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。大数据的 4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等都属于该范畴。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值)。

简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。

2 大数据的价值

众所周知,企业数据本身就蕴藏着价值,但是将有用的数据与没有价值的数据进行区分看起来可能是一个棘手的问题。

显然,您所掌握的人员情况、工资表和客户记录对于企业的运转至关重要,但是其他数据也拥有转化为价值的力量。一段记录人们如何在您的商店浏览购物的视频、人们在购买您的服务前后的所作所为、是什么吸引合作伙伴加盟、客户如何付款以及供应商喜欢的收款方式……所有这些场景都提供了很多指向,透过特殊的棱镜观察,将其与其他数据集对照,或者以与众不同的方式分析解剖,就能让您的行事方式发生天翻地覆的转变。

3 大数据应用的信息安全挑战

正如Gartner所说:“大数据安全是一场必要的斗争”。大数据已经渗透到各个行业领域,逐渐成为一种生产要素发挥着重要作用。大数据所含信息量较高,虽然相对价值密度较低,但是对它里面所蕴藏的潜在信息,随着快速处理和分析提取技术的发展,可以快速捕捉到有价值的信息以提供参考决策。然而,大数据掀起新一轮生产率提高和消费者盈余浪潮的同时,随着而来的是信息安全的挑战。

3.1 网络化社会使大数据易成为攻击目标

网络化社会的形成,为大数据在各个行业领域实现资源共享和数据互通搭建平台和通道。基于云计算的网络化社会为大数据提供了一个开放的环境,分布在不同地区的资源可以快速整合,动态配置,实现数据集合的共建共享。正因为平台的暴露,使得蕴含着海量数据和潜在价值的大数据更容易吸引黑客的攻击,对于攻击者而言,相对低的成本可以获得“滚雪球”的收益。从近年来在互联网上发生的用户账号的信息失窃等连锁反应可以看出,大数据更容易吸引黑客。

3.2 非结构化数据对大数据存储提出新要求

在大数据之前,我们通常将数据存储分为关系型数据库和文件服务器两种。对于将占数据总量80%以上的非结构化数据,虽然 NoSQL数据存储具有可扩展性和可用性等优点,利于趋势分析,为大数据存储提供了初步解决方案。但是 NoSQL数据存储仍存在以下问题:一是相对于严格访问控制和隐私管理的SQL技术,目前NoSQL还无法沿用SQL的模式,而且适应NoSQL的存储模式并不成熟;二是虽然NoSQL软件从传统数据存储中取得经验,但 NoSQL仍然存在各种漏洞,毕竟它使用的是新代码。三是由于 NoSQL服务器软件没有内置足够的安全,所以客户端应用程序需要内建安全因素,这又反过来导致产生了诸如身份验证、授权过程和输入验证等大量的安全问题。

3.3 技术发展增加了安全风险

随着计算机网络技术和人工智能的发展,为大数据自动收集效率以及智能动态分析性提供方便。但是,技术发展也增加了大数据的安全风险。一方面,大数据本身的安全防护存在漏洞。虽然云计算对大数据提供了便利,但对大数据的安全控制力度仍然不够,API访问权限控制以及密钥生成、存储和管理方面的不足都可能造成数据泄漏。而且大数据本身可以成为一个可持续攻击的载体,被隐藏在大数据中的恶意软件和病毒代码很难发现,从而达到长久攻击的目的。另一方面,攻击的技术提高了。在用数据挖掘和数据分析等大数据技术获取价值信息的同时,攻击者也在利用这些大数据技术进行攻击。

4 大数据时代的信息安全保障策略

当然,大数据也为数据安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对海量数据的分析有助于更好地跟踪网络异常行为,对实时安全和应用数据结合在一起的数据进行预防性分析,可防止诈骗和黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,从大数据的存储、应用和管理等方面层层把关,可以有针对性地应对数据安全威胁。

4.1 大数据存储安全策略

基于云计算架构的大数据,数据的存储和操作都是以服务的形式提供。目前,大数据的安全存储采用虚拟化海量存储技术来存储数据资源,涉及数据传输、隔离、恢复等的问题。解决大数据的安全存储,一是数据加密。在大数据安全服务的设计中,大数据可以按照数据安全存储的需求,被存储在数据集的任何存储空间,通过SSL(安全套接层)加密,实现数据集的节点和应用程序之间移动保护大数据。在大数据的传输服务过程中,加密为数据流的上传与下载提供有效的保护。应用隐私保护和外包数据计算,屏蔽网络攻击。目前,PGP和TrueCrypt等程序都提供了强大的加密功能。二是分离密钥和加密数据。使用加密把数据使用与数据保管分离,把密钥与要保护的数据隔离开。同时,定义产生、存储、备份、恢复等密钥管理生命周期。三是使用过滤器。通过过滤器的监控,一旦发现数据离开了用户的网络,就自动阻止数据的再次传输。四是数据备份。通过系统容灾、敏感信息集中管控和数据管理等产品,实现端对端的数据保护,确保大数据损坏情况下有备无患和安全管控。

4.2 大数据应用安全策略

随着大数据应用所需的技术和工具快速发展,大数据应用安全策略主要从以下几方面着手:一是防止APT攻击。借助大数据处理技术,针对APT安全攻击隐蔽能力强、长期潜伏、攻击路径和渠道不确定等特征,设计具备实时检测能力与事后回溯能力的全流量审计方案,提醒隐藏有病毒的应用程序。二是用户访问控制。大数据的跨平台传输应用在一定程度上会带来内在风险,可以根据大数据的密级程度和用户需求的不同,将大数据和用户设定不同的权限等级,并严格控制访问权限。而且,通过单点登录的统一身份认证与权限控制技术,对用户访问进行严格的控制,有效地保证大数据应用安全。三是整合工具和流程。通过整合工具和流程,确保大数据应用安全处于大数据系统的顶端。整合点平行于现有的连接的同时,减少通过连接企业或业务线的SIEM工具的输出到大数据安全仓库,以防止这些被预处理的数据被暴露算法和溢出加工后的数据集。同时,通过设计一个标准化的数据格式简化整合过程,同时也可以改善分析算法的持续验证。四是数据实时分析引擎。数据实时分析引擎融合了云计算、机器学习、语义分析、统计学等多个领域,通过数据实时分析引擎,从大数据中第一时间挖掘出黑客攻击、非法操作、潜在威胁等各类安全事件,第一时间发出警告响应。

4.3 大数据管理安全策略

通过技术措施来保护大数据的安全必然重要,但管理也很关键。大数据的管理安全策略主要有:一是规范建设。大数据建设是一项有序的、动态的、可持续发展的系统工程,一套规范的运行机制、建设标准和共享平台建设至关重要。规范化建设可以促进大数据管理过程的正规有序,实现各级各类信息系统的网络互连、数据集成、资源共享,在统一的安全规范框架下运行。二是建立以数据为中心的安全系统。基于云计算的大数据存储在云共享环境中,为了大数据的所有者可以对大数据使用进行控制,可以通过建设一个基于异构数据为中心的安全方法,从系统管理上保证大数据的安全。三是融合创新。大数据是在云计算的基础上提出的新概念,大数据时代应以智慧创新理念融合大数据与云计算,以智能管道与聚合平台为基础,提升数据流量规模、层次及内涵,在大数据流中提升知识价值洞察力。积极创造大数据公司技术融合平台,寻找数据洪流大潮中新的立足点,特别是在数据挖掘、人工智能、机器学习等新技术的创新应用融合创新。

5 结束语

大数据是信息化时代的“石油”。大数据转化为信息和知识的速度与能力将成为这个时代的核心竞争力之一,而大数据面临的安全挑战却不容忽视。只有大数据技术和大数据安全“两条腿”走路时,大数据才可以真正成为这个时代的驱动力量。

[1]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展.2013.

[2]陈明奇,姜禾.大数据时代的美国信息网络安全新战略分析[J].信息网络安全.2012.

[3]王珊,王会举,覃雄派,周烜.架构大数据:挑战、现状与展望[J].计算机学报.2011.

[4]肖新斌,史召臣.云计算引发的安全风险[J].信息安全与技术.2011.

[5]胡光永.基于云计算的数据安全存储策略研究[J].计算机测量与控制.2011.

猜你喜欢
数据安全
高速公路ETC用户隐私数据安全保护策略
我国5G数据安全保护供给不足,“四步”拉动产业发展
云计算中基于用户隐私的数据安全保护方法
电子制作(2019年14期)2019-08-20 05:43:42
建立激励相容机制保护数据安全
当代贵州(2018年21期)2018-08-29 00:47:20
大数据云计算环境下的数据安全
电子制作(2017年20期)2017-04-26 06:57:48
大数据安全和隐私保护技术架构研究
实时数据库系统数据安全采集方案
电信科学(2016年10期)2016-11-23 05:12:00
云环境中数据安全去重研究进展
通信学报(2016年11期)2016-08-16 03:20:49
数据安全重删系统与关键技术研究
大数据安全搜索与共享