薛东艳
(神木县林业局 林业工作站,陕西 神木719300)
遥感(Remote Sensing,RS)是20 世纪60 年代发展起来的一门集地学、生物学、航空航天、电磁波传输和图像处理等多学科交叉融合的新兴学科。 遥感技术具有周期性观测和大面积覆盖获取地面信息的特点,可以提供一种实时、动态、综合性强的环境资源信息。 遥感技术在林业中的应用被称为林业遥感技术,是指通过卫星和飞机对林业资源进行实时动态地监测,形成各种数据和信息,并通过综合分析处理为林业决策和发展提供服务。 我国应用林业遥感技术已有二十多年的历史,取得了可喜的成绩,充分展现了遥感技术在林业中的巨大生命力[1]。
遥感技术在林业中的应用非常广泛, 主要包括以下几个方面:森林资源遥感调查、森林火灾遥感监测、森林病虫灾害遥感监测及林业资源遥感动态监测等。遥感技术在空间分辨率和光谱分辨率方面的提高,以及雷达遥感、航空遥感和无人遥感飞机的发展,为林业遥感提供了丰富的信息源,拓宽了林业遥感应用的深度和广度,给森林资源清查和监测工作带来了新的契机,为“数字林业”的顺利推广提供了强大的信息保证[2]。
1.1.1 高空间分辨率遥感数据
林业遥感应用的主要数据源是光学遥感数据,如TM 和SPOT 等。TM 数据具有较高的空间分辨率和光谱分辨率, 且数据量大、 信息丰富、成本较低,一直是林业遥感的主要信息源,但其30m 的空间分辨率的应用精度并不令人满意。进行宏观森林资源监测时通常采用NOAA等中低分辨率数据,因为它们经济、实惠、待处理的信息量少,而且来源有保证, 但随之而来的问题是在使用这种信息源时如何保持其精度。 高分辨率卫星数据的出现,给林业遥感监测带来了希望,目前多用以IKONOS 为代表的高分辨率的卫星影像展开对监测森林资源、工程造林质量、退耕还林效益等方面的研究。
1.1.2 高光谱遥感数据
高光谱遥感能够探测到具有细微光谱差异的各种物体,大大地改善了对植被的识别和分类精度。利用高光谱数据实行的混合光谱分解方法可以将森林郁闭度这个最终光谱单元信息提取出来,合理而真实地反映其在空间上的分布[3],对于掌握森林结构与森林环境、加强森林生态系统管理具有重要意义。 此外,高光谱遥感数据凭借大量的光谱信息,在森林分类与调查、森林资源变化信息提取、森林火灾监测、森林病虫害评估等方面起到了举足轻重的作用,为实时而科学的森林经营管理增添了一种新技术手段。
1.1.3 雷达遥感数据
一般情况下,地球有60%~70%被云层覆盖,可见光、红外技术在这种天气下难以获得有效数据, 不能及时为林业行业提供数据支持。而合成孔径雷达(Synthetic Aperture Radar, SAR)具有全天时、全天候以及能够穿透掩盖物、较好反映地表结构信息的能力,为林业遥感提供了新的数据源,有效解决了上述问题。 SAR 遥感通过获取各种森林生物物理参数,被广泛用于识别森林类型、森林密度、年龄和监测森林生长、再生状况、森林砍伐、森林灾害以及估算森林的生物量、蓄积量,特别是对热带雨林砍伐监测,雷达几乎是唯一可以依赖的信息源[4],这些信息有效提高了人们对森林资源的认识。
1.2.1 森林资源遥感调查
森林资源遥感调查主要是通过野外调查和卫星图像的对照判读,进行森林类型判别,并用遥感数据与地面各种因子建立模型的定量表达,估计森林蓄积量和森林面积,利用多时相遥感影像监测森林覆盖率等。 早在1954 年,我国就创建了“森林航空测量调查大队”,首次建立了森林航空摄影、森林航空调查和地面综合调查相结合的森林调查技术体系[5]。
然而,过去我国森林资源规划设计调查主要是以航空照片和地形图为参考,制作外业调查手图,通过现场勾绘等手段完成林相图区划。这种传统的调查方式存在调查间隔期过长、调查人员投入多、劳动强度大、一次性经济投入大、出错机率大等问题,难以满足新时期的调查需求。自2003 年起,高空间分辨率卫星影像写进森林资源规划设计调查规程, 我国很多省区相继应用SPOT5 数据进行了森林资源规划设计调查试点[6],有效推动了林业资源调查数字化进程,促进了高空间分辨率卫星遥感技术的研发,相关研究内容主要包括蓄积量估测、树冠信息的提取方法、SPOT5 影像用于小班区划的方法, 并研发了基于高分辨遥感数据的小班区化系统[7]。高光谱遥感数据应用方面,主要开展了星载高光谱遥感数据的预处理、基于统计模型的森林郁闭度和叶面积指数估测、森林类型遥感识别方法、森林叶绿素含量的几何光学模型反演和机载高光谱数据的优势树种识别技术[8]等方面的研究。
1.2.2 森林火灾遥感监测
森林火灾是自然灾害中最为严重的一种, 森林一旦发生火灾,不仅会使辛苦几十年培育的林木顷刻间化为灰烬,而且会对生态环境带来严重的负面影响。如果能及时监测、预报森林火灾,其带来的损失就会大大减小。 早在20 世纪50 年代,我国林业行业就开展了利用航空遥感技术进行森林火灾监测的技术方法研究。 到70 年代末80 年代初, 美国的Landsat TM、NOAA 等卫星数据逐步被我国相关专家学者应用于森林火灾监测的研究中, 并在1987 年大兴安岭特大森林火灾监测中发挥了非常重要的作用。
随着卫星遥感技术的深入发展与应用,我国科研人员不断地探讨利用遥感技术进行森林防火应用的研究,并取得了许多重要成果。 尤其是“十五”以来,面对国内外不断面世的新型卫星遥感数据,我国学者解决了利用这些新型数据进行森林火灾预警监测的应用技术,如针对新出现的Terra/Aqua MODIS、ENVISAT-AATSR、ENVISAT-MERIS等卫星数据森林火灾预警监测应用技术需求,有效解决了森林火灾预警监测模型中可燃物类型的分类方法、植被因子的估测、小火点自动识别等方面的应用技术[9];利用MODIS 数据进行了森林火灾预警的应用方法;针对新型卫星数据林火信息快速提取的技术需求,建立完善了利用高性能平台森林火灾信息提取的技术系统。 通过近20 多年的技术突破,我国逐步研究形成了基于卫星遥感数据的森林火灾监测应用方法与技术系统,初步建立了基于航天、航空、瞭望台(塔)以及与地面巡护相结合的森林火灾监测体系[10];同时,还将海事卫星技术等应用于我国森林火灾的预防、监测及扑救工作中。 我国国家森林防火指挥部卫星森林火灾监测系统从1995 年应用至今, 从以前单一的NOAA-AVHRR 资料到后来综合应用NOAA、FY、MODIS 等资料,逐步发展成为国家森林防火指挥部和各省市林业部门防火办森林火灾宏观监测的主要手段, 并为扑救指挥提供了可靠的数据保障和技术支撑。
1.2.3 森林病虫灾害遥感监测
植物受到病虫害侵袭,会导致植物在各个波段上的波谱值发生变化。如植物在受到病虫灾害、人眼还不能感觉到时,其红外波段的光谱值就已发生了较大的变化。 从遥感数据中提取这些变化的信息,分析病虫害的源地、灾情分布、和发展状况,可以为防治森林病虫害提供有效帮助。早在1978 年,腾冲遥感综合试验就已开启了我国遥感技术监测森林病虫灾害的序幕。 随着航天遥感技术的发展,“七五”末期、“八五”初期,我国科研人员以松毛虫等食叶害虫灾害为例,广泛开展了针对针叶损失率、松针生物量和灾害程度等遥感监测方法的研究,充分证明当森林植物遭受病虫灾害的侵袭时,其叶绿素、水分等便会急剧下降,叶黄素、叶红素等会提高,必然导致其反射率发生显著变化,此项研究结果为林业遥感病虫灾害监测提供了重要的科学依据。此外还发展了基于多种植被指数的病虫灾害信息提取技术[11]。
“八五”后期和“九五”期间,在国家众多科技项目的支持下,我国科研人员全面地开展了森林病虫灾害遥感监测预警技术的研究,建立了基于单时相和多时相卫星遥感数据的灾害信息提取技术路线,引进吸收了航空录像和航空电子勾绘等遥感监测技术方法, 初步探索了天、空、地相结合的森林病虫灾害监测体系。并基于林业业务主管部门的预报、监测、灾害损失评估和决策支持需求,提出了森林病虫灾害的遥感、地理信息系统和全球定位系统技术集成应用模式[12]。 最近十几年来,着重开展了基于遥感技术的森林病虫灾害监测专业应用系统的研发,并进行了生产性示范,以完善相关应用系统的可操作性和实用性,同时也展示了其指导森林病虫灾害调查情况的应用潜力[13]。
1.2.4 林业生态工程遥感监测评价
林业生态工程遥感监测评价技术就是利用遥感技术,在统一规划和设计的技术平台上,进行应用系统集成,为实现林业生态工程建设的信息资源共享和技术共享提供技术支持。早在1979 年,国家就决定在我国西北、华北北部和东北西部风沙危害、水土流失严重的地区,建设大型防护林工程,即“三北”防护林工程。在“七五”期间,实施了重大遥感综合应用项目——“三北”防护林遥感综合调查研究。该项目主要采用了航天遥感技术对“三北”防护林地区的森林类型、面积、具体分布、保存率、草场的数量质量和分布、土地资源类型分布及数量和应用现状进行了综合调查, 并建立了基于防护林生态效益的动态监测系统,对不同类型区的造林适宜性做出了分析评价以及对防护林的防护效益进行了评估,为“三北”地区的森林综合治理提供了可靠的数据分析资料[14]。2000 年以来,国家先后启动了天然林资源保护、退耕还林工程等六大生态建设和造林工程。 2004 年开始的“国家林业生态工程重点区遥感监测评价项目”, 利用了2003 年至2011 年期间的MODIS、Landsat-TM、SPOT5、QuickBird 等多源卫星遥感数据,共对4 个天然林资源保护工程监测区和8 个退耕还林工程监测区进行了多期动态监测与评价。 “十一五”期间,我国科研人员开展了天然林保护工程、重点防护林工程和京津风沙源治理工程的遥感监测技术研究,开发了“国家重点林业生态工程监测与管理系统”[15], 广泛地为林业生态工程管理提供技术支撑与服务,有效推动了林业生态工程遥感监测评价的发展。
我国林业遥感技术的发展已有二十多年的历史,不仅做了大量的研究和实验工作、积累了丰富的资料和经验,还培养了一大批优秀的科研与应用工作者。 但是,伴随新时期国家对林业的要求和林业自身的发展,目前的林业遥感技术仍然不能全面满足实际需要,因此,应进一步加强林业遥感技术与应用系统建设,逐步形成天、空、地一体化的林业遥感应用体系[16]。
目前国内除森林火灾监测系统应用低分辨率的遥感卫星进行业务运行以外, 还没有应用中高分辨率的卫星建立起业务化的运行体系。 为实现遥感技术在各类林业调查与监测业务中的广泛应用,形成业务化运行的能力,还需要开展一项重要的基础性、支撑性的设施建设工作,即林业遥感应用综合服务平台的建设。 该平台应该建立面向林业遥感技术应用的集成环境,整合林业行业中与遥感技术应用密切相关的各类存储资源、数据资源、计算资源、软件资源和专家资源,逐步形成面向林业行业提供遥感数据的共享服务机制,并支撑林业遥感应用业务系统开发与运行服务的基础平台。该平台应具有能够支撑海量遥感数据存储、查询功能,具有基于网格的遥感数据应用处理和产品加工功能,以及对数据和产品的多层级分发与共享等强大功能。 该平台的建设将大力促进森林资源调查、森林火灾、森林病虫灾害及林业生态建设工程的监测等林业遥感应用业务化运行系统的建立。
遥感技术具有强大的数据获取能力,却在处理和分析这些数据时存在缺陷,地理信息系统(Geographic Information System,GIS)具有较为完善地空间数据综合分析处理平台,有效地解决了这一难题。 概括起来,GIS 在林业领域的应用研究内容主要有:森林资源信息管理、森林经营优化决策、森林分类经营区划、森林抽样设计、林业专题制图、林业采伐设计、营造林规划设计、森林资源管理网络等,极大地丰富了遥感数据的分析处理方法。 同时全球定位系统 (Global Positioning System, GPS)能够迅速准确地定位与导航,可以确定林业边界、地块、形状、海拔高度等,对实现“数字林业”具有重要意义[17]。 因此,要加强遥感与GIS 和GPS 的结合,逐步形成以林业遥感为基础,以GPS 为辅助手段,以GIS 为综合处理方法的全方位林业服务体系,最终实现林业资源调查、规划、经营管理的数字化。
任何一门学科的发展都离不开教育与培训工作。林业遥感作为一门高新技术,其发展一日千里,教育工作尤显重要。大学作为林业遥感教育和培训的主力军,不仅要开设全方位的林业遥感专业课程,而且要分层次,针对研究生、本科生和专科生开展不同的教学工作,为林业遥感培养大量的专业型人才和应用型人才。 此外,还要充分发挥林业研究机构的作用,将科研成果及时有效地用于实践中。 并加大对林业行业机构工作者的培训力度,全面提升我国林业工作者的专业技术水平。
当前我国林业遥感的主要任务是以遥感技术为中心,提供信息获取与信息服务的手段,为林业建设决策提供监测与效益评价信息。 林业行业应在国家林业资源与生态建设综合监测体系建设的基础上,大力推动林业遥感卫星、航空遥感平台、林业遥感信息产品标定等支撑平台的建设,不断完善林业遥感应用综合服务平台。 同时应加快遥感与GIS、GPS 的结合、重视林业遥感教育和培训工作,形成天、空、地一体化的综合监测模式, 建立起林业遥感综合监测评价的业务运行体系,促进我国森林资源、森林火灾、森林病虫灾害和林业生态建设工程遥感监测与评价的业务化运行,为我国森林资源的管理和保护、林业生态建设的管理和决策等提供强有力的支撑。
[1]王大勇,刘红润.浅谈遥感在我国林业中的应用[J].林业科技情报,2010,42(3):31-33.
[2]史良树.遥感技术现状及其在林业中的应用[J].林业资源管理,2004,4(2):50-52,63.
[3]谭炳香.高光谱遥感森林应用研究探讨[J].世界林业研究,2003,16(2):33-38.
[4]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
[5]林辉,童显德,黄忠义.遥感技术在我国林业中的应用与展望[J].遥感信息,2002(1):39-43.
[6]张煜星,等.基于SPOT 数据的森林林相图更新技术研究[M].北京:中国林业出版社,2007.
[7]吴春争,冯益明,舒清态,等.基于高空间分辨率影像的林业小班遥感区划系统设计与实现[J].浙江农林大学学报,2011,28(1):40-45.
[8]曾庆伟,武红敢.基于高光谱遥感技术的森林树种识别研究进展[J].林业资源管理,2009(5):109-114.
[9]覃先林. 遥感与地理信息系统技术相结合的林火预警方法的研究[D].中国林业科学研究院,2005.
[10]吴雪琼,覃先林,李程,等.我国林火监测体系现状分析[J].内蒙古林业调查设计,2010,33(3):69-72.
[11]武红敢.卫星遥感技术在森林病虫害监测中的应用[J].世界林业研究,1995,(2): 24-29.
[12]郭志华,肖文发,张真,等.RS 在森林病虫害监测研究中的应用[J].自然灾害学报,2003,12(4):73-81.
[13]亓兴兰,刘健,陈国荣,等.应用MODIS 遥感数据监测马尾松毛虫害研究[J].西南林学院学报,2010,30 (1): 42-46.
[14]“三北”防护林遥感综合调查课题组.“三北”防护林遥感综合调查技术规程[M].北京:中国林业出版社,1988.
[15]陈永富,刘华,孟献策.国家重点林业生态工程监测与管理系统[M].北京:中国林业出版社,2011.
[16]赵宪文.中国林业遥感发展中应该关注的几个问题[J].林业科学,2009,45(8):135-140.
[17]刘捷. 3S 技术在林业中的应用[J].天津农业科学,2007,13(1):62-64.