卓祥龙(综述),胡建中(审校)
(1.柳州工人医院脊柱外科,广西 柳州545005; 2.中南大学湘雅医院脊柱外科,长沙 410008)
电磁场是相互联系、相互依存的电场和磁场的统一体,变化的电场产生磁场,变化的磁场产生电场,两者互为因果形成电磁场。根据磁场强度和方向变化规律动磁场分为交变磁场、脉动磁场、脉冲磁场等。脉冲电磁场(pulsed electromagnetic fields,PEMFs)对成骨的影响被广泛研究。现就PEMFs在骨形成和骨吸收过程中的调节机制及其在临床骨科中的应用进行探讨和综述。
1.1骨髓间质干细胞 PEMFs能够通过调节相关基因的表达促进骨髓间质干细胞增殖和成骨分化,提高成骨效应。研究发现,PEMFs能够促进人骨髓间质干细胞增殖,主要发生在指数生长期,缩短滞后期,促进早期成骨分化,提高碱性磷酸酶(alkaline phosphatase,ALP)产物和钙盐沉积[1-3]。PEMFs能够直接刺激成骨祖细胞向成骨细胞分化,有利于体内成骨反应,但PEMFs刺激能够提高分化中的骨髓间质干细胞矿化,诱导成骨分化,上调成骨标志基因,促进矿物质的沉积[4]。
基因参与了骨骼的形成,骨盐代谢、细胞增殖、分化和细胞黏附等。PEMFs能够刺激骨髓间质干细胞成骨调控基因核结合因子α1表达,提高骨形成蛋白2(bone morphogentic protein 2,BMP-2)、转化生长因子β1(transforming growth factor β1,TGF-β1)、骨保护素(osteoprotegerin,OPG)、基质金属蛋白酶1或3、骨钙素和骨诞蛋白的信使RNA(mRNA)水平[4-5],调节成骨早期相关基因(Runx2/Cbfa1和ALP)表达[3]。PEMFs能够调节骨髓培养细胞的核因子κB受体因子和碳酸酐酶同工酶Ⅱ mRNA表达[6]。Chang等[7]研究发现,不同强度PEMFs对OPG、核因子κB受体活化因子和巨噬细胞集落刺激因子表达影响也不同,4.8 μV/cm显著抑制破骨细胞增殖,而12.2 μV/cm则显著刺激其增殖,对成骨细胞形成则相反。当PEMFs与BMP-2联合具有协同作用,当刺激人骨髓间质细胞时能够提高ALP和降钙素水平,PEMFs还能影响BMP-2对前列腺素E2的作用,潜在地激活TGF-β1和OPG。PEMFs增强了BMP-2人骨髓基质细胞的成骨效应,说明PEMFs能够改善体内骨内骨髓间质细胞对BMP-2的反应[8]。
1.2成骨细胞 PEMFs能够刺激人初级成骨细胞显著增殖,但不能促进成骨细胞和骨细胞增殖和分化,加速来源于成骨祖细胞和骨髓间充质细胞的成骨细胞凋亡[9-11]。PEMFs能够显著促进成骨祖细胞增殖和分化,刺激48 h可以显著提高成骨祖细胞中S和G2、M期细胞比例和ALP活性,在增殖节段促进增殖,抑制分化,分化节段促进分化[10,12]。然而,Diniz等[13]研究结果显示,PEEMs刺激成骨细胞系能够显著提高一氧化氮浓度、DNA含量,显著增加细胞增殖节段和分化阶段的ALP活性,对成骨细胞的影响是通过一氧化氮合成进行调节的。Zhang等[14]认为,电磁场波形是诱导成骨细胞反应的关键因素,采用不同的波形刺激新生鼠颅骨细胞,矩形波电磁场刺激促进细胞增殖,降低ALP活性,三角形波电磁场促进细胞矿化结节形成,正弦波电磁场降低细胞增殖,提高ALP活性,抑制矿化结节形成。PEMFs促进细胞增殖,抑制其分化,增加矿化结节形成。而且PEMF刺激对成骨细胞产生的效应与细胞外钙、细胞膜上P2受体和磷脂酶C路径有关。
Sollazzo等[15]用PEMFs刺激人成骨细胞样细胞结果发现,PEMFs刺激能够上调成骨相关基因(同源框基因A10、苏氨酸蛋向激酶1),转导水平相关基因(钙调蛋白基因、P2X7受体),细胞骨架成分相关基因(纤维蛋白1、黏着斑蛋白),胶原形成相关基因(Ⅰ型胶原蛋白α2链)及非胶原的基质成分形成相关基因(富含半胱氨酸分泌性酸性蛋白)的表达,下调细胞外基质蛋白降解相关基因(MMP-11、基质金属蛋白酶11、双特异性磷酸酶4)表达;能够诱导细胞增殖和分化,促进细胞外基质产生和矿化,同时降低基质的降解和吸收。PEMFs还能刺激成骨细胞OPG增加,上调OPG mRNA,增加OPG/核因子κB受体活化因子配体比例,从理论上支持PEMFs成骨效应[16],刺激前列腺素E和TGF-β1增高,通过前列腺素依赖机制中环加氧酶1调节TGF-β1,显著降低Cx43和Cx43 mRNA水平[17]。
PEMFs 刺激不影响成骨细胞的代谢活动和细胞数,能够增强成骨细胞的矿化,增加细胞ALP活性和矿化结节[17-18],刺激α(Ⅰ)骨胶原素,降钙素mRNA表达增加[19]。PEMFs刺激成骨具有表面依赖性,而且能够提高雌激素的表面依赖,能够调节成骨细胞合成代谢调节器成骨反应,然而PEMFs的这些效应在传统的塑料培养皿培养的细胞不明显[16]。组织修复过程包括蛋白合成和细胞分化。PEMFs刺激能够促进成骨样细胞蛋白和DNA合成和促进细胞分化。De Mattei等[20]用PEMFs刺激成骨样细胞63(MG-63),显著增加[H-3]胸苷掺入,显著降低腐胺,而亚精胺和精胺不受影响。C-myc 1 h后被激活下调,然而c-fos mRNA在0.5 h后增加然后降低。腐胺、亚精胺、精胺变化趋势和[H-3]胸苷掺入与PEMFs治疗显著相关。可见,PEMFs影响了MG-63细胞内腐胺和DNA合成,调节了c-myc和c-fos基因表达。胰岛素和类胰岛素生长因子1被认为在骨形成中发挥主要合成作用,胰岛素受体底物1、内皮一氧化氮合酶和S6参与骨合成代谢。PEMFs刺激促进成骨细胞合成代谢作用可能是部分通过激活蛋白进行调节的,PEMFs能够像胰岛素、甲状旁素一样对胰岛素受体底物1、S6核糖体亚单位激酶和内皮细胞一氧化氮合酶进行磷酸化,而且效果、时相相同[21]。
PEMFs刺激能够提高与三维多孔仿生生物支架联合培养成骨细胞活性,促进基质钙化,但不影响生物支架的理化性能,而且能够改善支架表面生物相容性,促进细胞增殖并长入仿生骨生物支架。Torricelli等[22]研究了PEMFs刺激对人成骨样细胞(MG63)与聚异丁烯酸甲酯(poly-methylmethacrylate,PMMA)和PMMA/α-磷酸三钙仿生骨支架联合培养。结果显示,PMMA对成骨细胞产生不利影响,而PMMA/α-磷酸三钙提高了ALP、Ⅰ型前胶原羧基端、骨钙素和TGF-β1水平,降低了白细胞介素6水平。细胞对PEMF刺激反应积极,甚至在存在生物相容性差的PMMA也有积极作用,进一步改善细胞增殖和合成活动。Tsai等[23]研究表明,不同磁场强度和持续时间PEMFs刺激对于成骨细胞与多孔聚乳酸-羟基乙酸共聚物支架联合培养细胞增殖和分化的调节作用不同,并且随培养时间延长而变化。
1.3成软骨细胞 PEMFs显著促进牛软骨蛋白多糖合成,以1.5 mT效果最好[24],刺激体外培养的人软骨细胞改变形态,缩回伪足,由星型、纺锤形向球型转变[25]。PEMFs刺激支架诱导软骨细胞移植来源的细胞,显著增加S、G2和M期细胞,支架联合诱导软骨细胞促进2型胶原表达,这为支持软骨细胞生长和增殖提供生物工程载体。外科移植铸模诱导软骨移植联合物理治疗是一个有前途的治疗软骨外伤性缺损又快又安全的方法[26]。PEMFs刺激软骨细胞能够显著上调A(2A)和A(3)受体和热力学参数,显著增强A(2A)或A(3)对cAMP的作用,这可能对治疗炎性关节疾病有益处[27]。
PEMFs刺激能有效治疗骨质疏松,抑制骨丢失,促进骨重建。PEMFs刺激SD大鼠废用性骨质疏松模型,显著提高骨矿物质密度,促进TGF-β1分泌和抑制白细胞介素6表达[28]。PEFMs刺激卵巢切除SD大鼠骨质疏松模型,显著抑制小梁骨丢失和恢复小梁骨结构,降低前列腺素E2水平。但van der Jagt等[29]使用显微CT研究发现,PEMFs对于去势大鼠骨质疏松的治疗显示微观结构没有改变。临床随机对照试验采用PEMFs和阿仑膦酸钠治疗中国西南部妇女绝经后骨质疏松患者,结果显示在治疗24周内,测量腰椎和股骨近端骨密度、维生素D3、下肢肌力结果两者无差别[30]。
PEMFs刺激还能提高成年健康大鼠股骨皮质和骨小梁厚度,PEMFs治疗大鼠腓骨骨不连模型能够显著降低时间依赖性骨量丢失,显著缩短骨切除后断端之间的距离。PEMFs刺激能够加快犬胫骨中段骨缺损骨骼载荷恢复,显著加快新骨形成,提高机械强度,在骨愈合晚期促进骨小梁生成和成熟[31]。
PEMFs刺激兔胫骨牵张成骨能够显著提高新生骨的强度[32],促进牵张早期(1~2周)矿物质沉积和断端皮质成骨细胞活性,但对于牵张成骨巩固阶段作用不大[33]。动物实验也证明,PEMFs能够显著改善生物材料的组织学反应,提高生物支架生物相容性,促进自体骨与支架材料骨整合,提高新生骨形成率,显著改善骨整合力学性能[34]。PEMFs可显著降低皮质类固醇诱导兔骨坏死发生率,这可能与PEMFs刺激血管形成因子增加和扩张血管有关[35]。
在日常活动中骨骼承受循环载荷在皮质骨产生微损伤,这些微裂纹被破骨细胞清除。然后,潜伏在骨细胞中生长因子被破骨细胞激活并释放到骨液中,这些生长因子刺激成骨细胞填充这些孔腔。PEMFs作为一种生物物理技术,能够刺激生长因子增殖和间接促进骨重建过程,调节细胞外基质合成,这可能对于临床刺激修复骨折和不愈合有用。临床研究已显示,PEMFs调节软骨化骨中的蛋白多糖和胶原合成,体内和体外促进骨形成[36]。也有多个临床对照试验证明PEMFs能够显著提高临床骨不连的愈合率,是治疗难治性骨不连的有效手段,治愈率可高达91%,还有助于髋关节置换翻修术的临床康复和骨储备的恢复[37-40]。
随着基础和临床研究的不断深入,对于电磁场刺激与组织修复和再生的作用机制进一步认识,将来的研究将集中探索脉冲电磁场在促进组织修复、炎症消退特别是骨修复应用中更加安全、有效的治疗参数,以及电磁场刺激与骨组织工程相结合在骨组织修复中效应的研究。进一步探索其相互作用的机制,推动物理治疗和骨组织工程交叉学科的快速发展。
[1] Sun LY,Hsieh DK,Lin PC,etal.Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation[J].Bioelectromagnetics, 2010,31(3):209-219.
[2] Sun LY,Hsieh DK,Yu TC,etal.Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells[J].Bioelectromagnetics, 2009,30(4):251-260.
[3] Tsai MT,Li WJ,Tuan RS,etal.Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation[J]. J Orthop Res,2009,27(9):1169-1174.
[4] Jansen J,van der Jagt OP,Punt BJ,etal. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields:an in vitro study[J].BMC Musculoskelet Disord,2010,11:188.
[5] Kaivosoja E,Sariola V,Chen Y,etal.The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells[J].J Tissue Eng Regen Med,2012.
[6] Chen J,He HC,Xia QJ,etal.Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized rat osteoclast-like cell[J].Connect Tissue Res,2010,51(1):1-7.
[7] Chang K,Chang W,Huang S,etal.Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin,RANK ligand and macrophage colony-stimulating factor[J].J Orthop Res,2005,23(6):1308-1314.
[8] Schwartz Z,Simon BJ,Duran MA,etal.Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells[J].J Orthop Res,2008,26(9):1250-1255.
[9] Barnaba S,Papalia R,Ruzzini L,etal.Effect of pulsed electromagnetic fields on human osteoblast cultures[J].Physiother Res Int,2013,18(2):109-114.
[10] Wei Y,Xiaolin H,Tao S.Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells[J]. Electromagn Biol Med,2008,27(3):298-311.
[11] Chang K,Chang W,Tsai MT,etal.Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts[J].Connect Tissue Res,2006,47(4): 222-228.
[12] Teven CM,Greives M,Natale RB,etal. Differentiation of osteoprogenitor cells is induced by high-frequency pulsed electromagnetic fields[J].J Craniofac Surg,2012,23(2):586-593.
[13] Diniz P,Soejima K,Ito G.Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation[J]. Nitric Oxide,2002,7(1):18-23.
[14] Zhang XJ,Zhang JB,Qu XM,etal.Effects of different extremely low-frequency electromagnetic fields on osteoblasts[J].Electromagn Biol Med,2007,26(3):167-177.
[15] Sollazzo V,Palmieri A,Pezzetti F,etal.Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63) a pilot study[J].Clin Orthop Relat Res,2010,468(8):2260-2277.
[16] Schwartz Z,Fisher M,Lohmann CH,etal.Osteoprotegerin(OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates[J].Ann Biomed Eng, 2009,37(3):437-444.
[17] Lohmann CH,Schwartz Z,Liu Y,etal.Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells[J].J Orthop Res, 2003,21(2):326-334.
[18] Martino CF,Belchenko D,Ferguson V,etal.The effects of pulsed electromagnetic fields on the cellular activity of SaOS-2 cells[J]. Bioelectromagnetics,2008,29(2):125-132.
[19] Selvarnurugan N,Kwok S,Vasilov A,etal.Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression[J].J Orthop Res,2007,25(9):1213-1220.
[20] De Mattei M,Gagliano N,Moscheni C,etal.Changes in polyamines,c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields[J].Bioelectromagnetics, 2005,26(3):207-214.
[21] Schnoke M,Midura RJ.Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells:comparison to parathyroid hormone and insulin[J].J Orthop Res, 2007,25(7):933-940.
[22] Torricelli P,Fini M,Giavaresi G,etal. Biomimetic PMMA-based bone substitutes:a comparative in vitro evaluation of the effects of pulsed electromagnetic field exposure[J].J Biomed Mater Res A, 2003,64(1):182-188.
[23] Tsai MT,Chang W,Chang K,etal.Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering[J].Bioelectromagnetics,2007,28(7):519-528.
[24] De Mattei M,Fini M,Setti S,etal.Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields[J].Osteoarthritis Cartilage, 2007,15(2):163-168.
[25] Jahns ME,Lou E,Durdle NG,etal.The effect of pulsed electromagnetic fields on chondrocyte morphology[J].Med Biol Eng Comput,2007,45(10): 917-925.
[26] Nicolin V,Ponti C,Baldini G,etal.In vitro exposure of human chondrocytes to pulsed electromagnetic fields[J].Eur J Histochem, 2007,51(3):203-211.
[27] Varani K,De Mattei M,Vincenzi F,etal. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields[J].Osteoarthritis Cartilage, 2008,16(3):292-304.
[28] Shen WW,Zhao JH.Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis[J].Bioelectromagnetics, 2010,31(2):113-119.
[29] Van Der Jagt OP,Van Der Linden JC,Waarsing JH,etal.Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats[J].Int Orthop,2012,36(7):1501-1506.
[30] Liu HF,Yang L,He HC,etal.Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest China:a randomized,active-controlled clinical trial[J].Bioelectromagnetics,2013,34(4):323-332.
[31] Marquez-Gamino S,Sotelo F,Sosa M,etal.Pulsed electromagnetic fields induced femoral metaphyseal bone thickness changes in the rat[J]. Bioelectromagnetics,2008,29(5):406-409.
[32] Fredericks DC,Piehl DJ,Baker JT,etal.Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model[J].J Pediatr Orthop,2003,23(4): 478-483.
[33] Taylor KF,Inoue N,Rafiee B,etal.Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model[J].J Orthop Res, 2006,24(1):2-10.
[34] Fini M,Giavaresi G,Giardino R,etal. Histomorphometric and mechanical analysis of the hydroxyapatite-bone interface after electromagnetic stimulation:an experimental study in rabbits[J].J Bone Joint Surg Br,2006,88(1):123-128.
[35] Ishida M,Fujioka M,Takahashi KA,etal. Electromagnetic fields:a novel prophylaxis for steroid-induced osteonecrosis[J].Clin Orthop Relat Res,2008,466(5):1068-1073.
[36] Ciombor DM,Aaron RK,Wang S,etal.Modification of osteoarthritis by pulsed electromagnetic field—a morphological study[J].Osteoarthritis Cartilage,2003, 11(6):455-462.
[37] Cebrian JL,Gallego P,Frances A,etal.Comparative study of the use of electromagnetic fields in patients with pseudoarthrosis of tibia treated by intramedullary nailing[J].Int Orthop, 2010,34(3):437-440.
[38] Gupta AK,Srivastava KP,Avasthi S.Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures[J].Indian J Orthop,2009,43(2): 156-160.
[39] Dallari D,Fini M,Giavaresi G,etal.Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses:a randomized prospective double-blind study[J]. Bioelectromagnetics,2009,30(6):423-430.
[40] Assiotis A,Sachinis NP,Chalidis BE.Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions.A prospective clinical study and review of the literature[J].J Orthop Surg Res, 2012,7:24.