肖何 牛晓辉
肿瘤型人工关节假体无菌性松动率及相关因素
肖何 牛晓辉
肿瘤型人工关节假体的首例应用是 1940 年 Moore等[1]为 1 例骨巨细胞瘤患者植入的股骨上端金属假体。直到植入后 2 年患者因心力衰竭死亡,该假体一直未发生无菌性松动。由于术后复发率高,原发恶性骨肿瘤的保肢治疗在当时并未被广泛接受[2],肿瘤型人工关节假体也较少。20 世纪下半叶,放化疗的进步为原发骨肉瘤及转移瘤的保肢治疗创造了条件[3-5]。肿瘤型人工关节假体的应用才逐渐广泛。
与截肢相比,人工假体置换能提供更好的肢体功能[6-7],历史上曾出现过的其它重建材料,主要是同种异体骨和异体骨-假体复合物( APC )。异体骨的感染风险较高[6,8-9]。APC容易发生骨折,并且难以和宿主骨形成骨性结合[6,10-13]。目前肿瘤型人工关节假体是重建材料的主流。
Wirganowicz 等[14]和 Henderson 等[15]将肿瘤型人工关节假体失败分为软组织失败,无菌性松动,假体结构失败,感染,肿瘤进展等 5 个类型。文献报道认为无菌性松动是下肢肿瘤型关节假体失败最主要的原因[16-17],是机械性失败中最常见的类型[18],以及最常见的长期并发症[19]。鉴于其重要地位,肿瘤型人工关节假体的无菌松动率及其影响因素颇有研究价值。现回顾既往文献,对肿瘤型人工关节假体的无菌性松动率以及各方面因素对无菌松动率的影响作一综述。
人体的生物力学特点决定了不同部位假体的固定界面应力不同,骨髓腔的形态以及小梁骨的骨量也有所差异,这会影响假体的稳固程度[16]。
Unwin 等[16]对 1001 例定制式固定铰链水泥固定假体下肢关节置换进行的长期随访发现植入后 10 年的无菌松动率分别为股骨近端 6.2%,股骨远端 32.6%,胫骨近端42%,股骨近端的松动率显著低于其它两个部位。Mittermayer 等[20]对 251 例非水泥固定的旋转铰链关节置换的研究也得出了类似结论;植入后 10 年的无菌松动率在股骨近端为 4%,股骨远端为 24%,胫骨近端为 15%。胫骨近端的假体松动率最高,其次是股骨远端和股骨近端,差异有统计学意义。
Henderson 等[17]对 2174 例的研究显示,上肢肿瘤型关节假体的无菌松动率低于下肢,但差异无统计学意义,对 4359 例研究显示,各部位假体的总体松动率为 10%,肱骨近端为 6.8%,肱骨远端为 5.7%,股骨近端为 5.3%,股骨远端为 11.5%,胫骨近端为 8.8%[17]。目前尚无证据提示上下肢假体松动率差异有统计学意义。
综上所述,植入部位是无菌性松动较为确定的相关因素。研究显示股骨近端的松动率显著低于股骨远端和胫骨近端。上下肢之间以及上肢不同部位之间松动率的差异还有待明确。
一、假体柄与松动的关系
1. 假体柄直径与松动率的关系:有学者认为传统骨水泥固定技术中假体并周围水泥较厚,会增加松动风险,而充分扩髓并使用直径较大的假体柄能实现不依赖于骨水泥的三点固定,保护水泥-假体柄界面,降低松动率[21]。
Bergin 等[21]对 91 例股骨远端水泥固定假体平均时间12.7 年的随访发现未发生松动的假体柄直径比发生松动的假体柄直径大 35%,假体柄 / 股骨干的直径比与无菌性松动的独立危险因素大。
目前假体柄直径与松动率的相关性仅在水泥固定假体中有小样本的报道,在非水泥固定肿瘤型假体中尚无报道。假体柄直径与松动率的关系还需要更有说服力的证据。
2. 水泥 / 非水泥固定与松动率的关系:首例肿瘤型关节假体是通过皮质外螺栓固定[1],关节假体的骨水泥固定在 1953 年由 Harboush[22]首次应用,1960 年由 Charnley[23]推广。为解决水泥固定松动率高的问题,20 世纪 80 年代出现了不依赖骨水泥的生物固定技术。目前关节假体的固定方式主要分为水泥固定( CIS )和生物固定( UCS )两大类。
既往文献中生物固定的松动率为 0%~27%[24-30],水泥固定的松动率为 2%~34%[16,31-32],生物固定松动率似乎较低。目前比较二种固定方式松动率的研究尚少,Giltelis等[33]对 80 例胫骨近端和股骨远端肿瘤型关节置换进行平均 5.3 年的随访显示,生物固定与水泥固定无菌松动率无显著差异。
总之,大量数据显示生物固定松动率似乎低于水泥固定,但目前尚无明确证据提示两者松动率差异有无统计学意义。此两种固定方式对假体松动率的影响还有待进一步研究。
3. 加压固定与松动率的关系:传统的压配式生物固定容易造成应力遮挡,导致的假体柄周围骨量丢失,这可能增加无菌性松动的风险,而避免应力遮挡也许能减少无菌性松动[6]。根据这一设想,20 世纪 90 年代初出现了以Compress 假体为代表的加压生物固定技术。该假体通过固定于髓腔内的加压装置向植入的骨端施加轴向压力,以此避免应力遮挡,同时封闭髓腔以避免磨损微粒进入[34,28]。体外模型研究证实了加压固定能避免应力遮挡[35],影像学观察[36]以及假体固定界面组织学研究[37-38]也证实了加压固定能促进假体周围的骨增生。
Healey 等[39]对 82 例进行平均 43 个月的随访显示,Compress 假体植入后 10 年的无菌松动率为 10%。Farfalli等[28]的研究,显示轴向加压的大小未对无菌性松动率造成影响。
文献报道,加压固定和水泥固定的膝关节假体在平均约 2 年的随访中松动率均为 0%,5 年松动率分别为 4.3%( 加压固定组 )和 8.7%( 水泥固定组 ),差异无统计学意义[40-41]。但该研究未排除关节类型的影响,其结论说服力有限。与压配固定的比较方面,Farfalli 等[28]对同一种关节结构,单纯压配固定和 Compress 假体共 91 例进行了平均分别为 88 个月和 45 个月的随访,因无菌松动须翻修的病例在压配组为 12 例( 24% ),而 Compress 组为 0 例( 0% )。笔者对该报道原始数据行卡方分析显示,两组松动率差异有统计学意义( P<0.01 ),Compress 假体松动率低于单纯压配式假体。
综上所述,加压生物固定假体的短期和长期松动率均较低( 0%~10% ),小样本研究提示其短、中期松动率较传统压配固定低。准确评价加压固定对假体松动的影响还需要大样本量、长随访时间的研究。
4. 假体涂层与松动率的关系:假体柄表面覆盖在假体与骨的接触面覆盖羟基磷灰石( HA )或双相磷酸三钙( HA / TCP )涂层的目的为促进假体柄与内侧皮质的骨整合,增加假体的长期轴向和旋转稳定性[3];阻挡磨损微粒的进入;借助粗糙的表面增加即时稳定性[28]。目前尚无无涂层假体柄与涂层假体柄无菌松动率差异的报道。
假体领部覆盖涂层的目的是使骨生长从骨皮质外跨越骨与假体的连接部,形成皮质外骨桥。皮质外骨桥理论上能加强假体固定,改善应力传导,并且封闭假体与骨的接触面以避免磨损微粒进入骨-水泥界面[42]。Myers 等对 173 例股骨远端旋转铰链式假体的研究显示,有领口涂层的假体 10 年松动率( 0% )显著低于无领口涂层的假体( 24% )[31]。Myers 等还报道 99 例有涂层的胫骨近端假体 10 年和 15 年的松动率仅为 3% 和 9%[32]。Shin 等[42]对31 例有领部多孔涂层的假体进行了平均 12.5 年的长期随访研究显示,松动率为 19%。
综上所述,假体柄涂层对松动率的影响还有待进一步研究,假体领部涂层能有效降低假体松动率。
二、关节类型与松动率的关系
由于术中通常无法保留膝关节周围韧带,所以肿瘤型膝关节假体主要是铰链关节。早期的肿瘤型膝关节假体是单纯铰链式的,只允许屈伸运动。20 世纪 80 年代中期出现了旋转铰链关节,通过减少传递到股骨柄上的扭旋应力降低了松动率。
Henderson 等[17]对 2174 例肿瘤型假体植入患者的多中心研究显示,单轴膝关节的松动率( 6.1% )显著低于多轴膝关节( 2.7% )。Myers 等[31]报道,股骨远端无领部涂层的固定铰链关节和旋转铰链关节植入 10 年后的无菌松动率分别为 35% 和 24%,领部有羟基磷灰石涂层的旋转铰链关节为 0%。有领部涂层的旋转铰链关节松动率显著低于另外两种关节。而胫骨近端肿瘤切除的患者中,无领部涂层的固定铰链关节和带有领部涂层旋转铰链关节植入10 年后的无菌松动率分别为 46% 和 3%,旋转铰链假体松动率显著低于固定铰链假体[32]。
综上所述,有力的证据表明旋转铰链式膝关节假体的无菌松动率低于固定铰链式膝关节假体。关节类型的改进降低了假体的无菌松动率。
三、组配式 / 定制式结构和松动率的关系
早期的肿瘤型假体是根据患者的影像学检查在术前个体化制造,称为定制式假体。术前等待假体完工的过程中肿瘤的生长往往会迫使手术计划改变,并且术前测量的误差不可避免,这两方面的因素造成了定制式假体与术中实际条件不匹配的问题。20 世纪 80 年代中期出现了组配式假体,此类假体按照不同尺寸标准化制造,可根据术中情况现场装配。凭借其即时可用性及灵活性,组配式假体目前已成为肿瘤型关节假体的主流[43],定制式假体只在假体柄直径特殊及其它特殊情况下使用[44]。
有学者对多种关节的定制版本和组配版本共 186 例进行了平均 96 个月的随访,101 例定制式假体中有 19 例( 18.8% )发生无菌性松动,而 85 例组配式假体中仅有3 例( 3.5% )发生无菌性松动[43]。笔者对该研究的原始数据行卡方分析示,两组松动率差异有统计学意义( P<0.01 ),组配式假体的松动率低于定制式假体。
综上所述,关于组配式与定制式假体的无菌松动率的差异报道较少。但有限的文献也显示组配式假体的松动率低于定制式假体。
众多文献报道了手术时的年龄与无菌松动的相关性。Unwin 等对 1001 例水泥固定的固定铰链膝关节和股骨上端假体的研究发现,手术时年龄>20 岁者比<20 岁者的无菌松动率低[16]。Myers 等[31-32]对固定铰链膝关节假体的研究也提示,手术时年龄>60 岁患者的松动率显著低于<60 岁的患者。Mittermayer 等[20]对 250 例非水泥固定组配式假体的研究也显示,手术时年龄>30 岁患者的术后10 年松动率比<30 岁的患者显著低。但是,也有少数研究否认年龄与松动率的相关性[45,21]。既往研究多显示性别和松动率相关[16,31,20],尚无证据提示两者的相关性。
总之,目前多数研究认为:肿瘤型关节假体的无菌松动率年长患者低于年轻患者,并且与性别不相关。
肿瘤病灶的大小、关节假体与术中所见情况的匹配程度、术者技术水平等因素决定了肿瘤型关节假体置换术中重建的长度。而植入部位的力线偏距,髓腔形态,骨质条件等都会受随重建长度的影响,进而影响假体的稳定程度[16]。
一些研究发现重建长度占骨骼原本长度的百分比和无菌性松动有相关性,Unwin 等[16]对 1001 例水泥固定的下肢肿瘤型关节假体置换的研究表明,在胫骨近端和股骨远端,重建长度百分比越大,无菌性松动率越高,有统计学意义。而在股骨近端这一规律刚好相反,但无统计学意义。然而,Kawai 等[45]对水泥和压配固定假体的研究以及Bergin 等[21]对水泥固定假体的研究提示,重建长度与松动率不相关,但这些研究的样本都<100 例,说服力相对较弱。
总之,对于水泥固定的肿瘤型人工关节假体,重建长度是其无菌松动率的相关因素,两者的关系在不同的解剖部位各不相同。重建长度与非水泥固定松动率的相关性需要进一步研究。
目前,多数文献均提示,病种与肿瘤型关节假体的松动率不相关[21,31,43]。长期以来化疗都被怀疑对骨骼有不良作用,包括抑制新骨形成并导致骨量减少,减慢儿童骨生长,增加骨肿瘤患者异体骨重建不愈合的风险[46-53]等。Avedian 等[36]对加压固定肿瘤型假体植入患者的前瞻性研究显示,化疗会抑制骨-假体界面的骨质增生。但是,目前尚无研究提示化疗会影响假体的无菌性松动率。Kawai等[45]对 82 例肿瘤型关节假体置换患者的中长期随访显示,化疗与无菌性松动无相关性。其它研究也未发现化疗与松动率相关[21]。
值得注意的是,化疗的使用决定于病种、肿瘤分期等因素,并且化疗会影响患者的营养状况,而有证据表明营养不良不利于假体的骨整合[53]。由于混杂因素众多,评价化疗与松动关系还需要更多更深入的多因素分析研究。
总之,肿瘤型关节假体的无菌性松动受到诸多因素的影响。目前较明确的相关因素包括植入部位,假体领部涂层,关节类型,年龄、骨切除长度等。而患者性别和病种比较明确,与无菌性松动不相关。假体髓内柄尺寸、固定方式、组配式 / 定制式、化疗等因素与松动率的相关性尚无明确结论。肿瘤型关节假体的改进降低了无菌性松动率,关注肿瘤型关节假体的无菌性松动率能为假体的设计和使用提供参考。更长时间大样本的随访,前瞻性研究,多因素分析以及多中心的病例回顾将会为肿瘤型人工关节假体的无菌性松动提供更准确客观的结论。
[1] Austin T. Moore, Harold R. Bohlman. Metal hip joint: a case report. J Bone Joint Surg (Am), 1943, 25(3):688-692.
[2] Gilbert HA, Kagan AR, Winkley J. Soft tissue sarcomas of the extremities: their natural history, treatment, and radiation sensitivity. J Surg Oncol, 1975, 7(4):303-317.
[3] Palumbo BT, Henderson ER, Groundland JS, et al. Advances in segmental endoprosthetic reconstruction for extremity tumors: a review of contemporary designs and techniques. Cancer Control, 2011, 18(3):160-170.
[4] Marcove RC, Lewis MM, Rosen G, et al. Total femur and total knee replacement: a preliminary report. Clin Orthop Relat Res, 1977, 126:147-152.
[5] Marcove RC, Rosen G. En bloc resections for osteogenic sarcoma. Cancer, 1980, 45:3040-3044.
[6] Calvert GT, Cummings JE, Bowles AJ, et al. A dual-center review of compressive osseointegration for fxation of massive endoprosthetics: 2- to 9-year followup. Clin Orthop Relat Res, 2014, 472(3):822-829.
[7] Rougraff BT, Simon MA, Kneisl JS, et al. Limb salvage compared with amputation for osteosarcoma of the distal end of the femur: a long-term oncological, functional, and qualityof-life study. J Bone Joint Surg (Am), 1994, 76(5):649-656.
[8] Muscolo DL, Ayerza MA, Farfalli G, et al. Proximal tibia osteoarticular allografts in tumor limb salvage surgery. Clin Orthop Relat Res, 2010, 468:1396-1404.
[9] Ogilvie CM, Crawford EA, Hosalkar HS, et al. Long-term results for limb salvage with osteoarticular allograft reconstruction. Clin Orthop Relat Res, 2009, 467:2685-2690.
[10] Donati D, Colangeli M, Colangeli S, et al. Allograft-prosthetic composite in the proximal tibia after bone tumor resection. Clin Orthop Relat Res, 2008, 466:459-465.
[11] Farid Y, Lin PP, Lewis VO, et al. Endoprosthetic and allograftprosthetic composite reconstruction of the proximal femur for bone neoplasms. Clin Orthop Relat Res, 2006, 442:223-229.
[12] Gilbert NF, Yasko AW, Oates SD, et al. Allograft-prosthetic composite reconstruction of the proximal part of the tibia: an analysis of the early results. J Bone Joint Surg (Am), 2009, 91(7):1646-1656.
[13] Zehr RJ, Enneking WF, Scarborough MT. Allograft-prosthesis composite versus megaprosthesis in proximal femoral reconstruction. Clin Orthop Relat Res, 1996, 312:207-223.
[14] Wirganowicz PZ, Eckardt JJ, Dorey FJ, et al. Etiology and results of tumor endoprosthesis revision surgery in 64 patients. Clin Orthop Relat Res, 1999, 358:64-74.
[15] Henderson E, Groundland J, Marulanda GA. Peri-operative expectations with revision of lower extremity segmental megaprosthesis for tumor: Podium presented at the American Academy of Orthopaedic Surgeons 2010 Annual Meeting, New Orleans, 2010, 409.
[16] Unwin PS, Cannon SR, Grimer RJ, et al. Aseptic loosening in cemented custom-made prosthetic replacements for bone tumours of the lower limb. J Bone Joint Surg (Br), 1996, 78(1):5-13.
[17] Henderson ER, Groundland JS, Pala E, et al. Failure mode classifcation for tumor endoprostheses: retrospective review of fveinstitutions and a literature review. J Bone Joint Surg (Am), 2011, 93(5):418-429.
[18] Jeys LM, Kulkarni A, Grimer RJ, et al. Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis. J Bone Joint Surg (Am), 2008, 90(6):1265-1271.
[19] Farfalli GL, Boland PJ, Morris CD, et al. Early equivalence of uncemented press-fit and Compress femoral fixation. Clin Orthop Relat Res, 2009, 457:2792-2799.
[20] Mittermayer F, Windhager R, Dominkus M, et al. Revision of the Kotz type of tumour endoprosthesis for the lower limb. J Bone Joint Surg (Br), 2002, 84(3):401-406.
[21] Bergin PF, Noveau JB, Jelinek JS, et al. Aseptic loosening rates in distal femoral endoprostheses: does stem size matter? Clin Orthop Relat Res, 2012, 470(3):743-750.
[22] Harboush EJ. A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Joint Dis, 1953, 14(2): 242-277.
[23] Charnley J. Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg (Br), 1960, 42-B:28-30.
[24] Griffn AM, Parsons JA, Davis AM, et al. Uncemented tumor endoprostheses at the knee: root causes of failure. Clin Orthop Relat Res, 2005, 438:71-79.
[25] Wunder JS, Leitch K, Griffin AM, et al. Comparison of two methods of reconstruction for primary malignant tumors at the knee: a sequential cohort study. J Surg Oncol, 2001, 77:89-99.
[26] Flint MN, Griffin AM, Bell RS, et al. Aseptic loosening is uncommon with uncemented proximal tibia tumor prostheses. Clin Orthop Relat Res, 2006, 450:452-459.
[27] Mittermayer F, Krepler P, Dominkus M, et al. Long-term followup of uncemented tumor endoprostheses for the lower extremity. Clin Orthop Relat Res, 2001, 388:167-177.
[28] Farfalli GL, Boland PJ, Morris CD, et al. Early equivalence of uncemented press-fit and Compress femoral fixation. Clin Orthop Relat Res, 2009, 467(11):2792-2799.
[29] Song WS, Kong CB, Jeon DG, et al. The impact of amount of bone resection on uncemented prosthesis failure in patientswith a distal femoral tumor. J Surg Oncol, 2011, 104(2): 192-197.
[30] Capanna R, Morris HG, Campanacci D, et al. Modular uncemented prosthetic reconstruction after resection of tumours of the distal femur. J Bone Joint Surg (Br), 1994, 76(2):178-186.
[31] Myers GJ, Abudu AT, Carter SR, et al. Endoprosthetic replacement of the distal femur for bone tumours: long-term results. J Bone Joint Surg (Br), 2007, 89(4):521-526.
[32] Myers GJ, Abudu AT, Carter SR, et al. The long-term results of endoprosthetic replacement of the proximal tibia for bone tumours. J Bone Joint Surg (Br), 2007, 89(12):1632-1637.
[33] Gitelis S, Yergler JD, Sawlani N, et al. Shott S.Short and long term failure of the modular oncology knee prosthesis. Orthopedics, 2008, 31(4):362.
[34] Richard J, O’Donnell. Compressive osseointegration of tibial implants in primary cancer reconstruction. Clin Orthop Relat Res, 2009, 467(11):2807-2812.
[35] Cristofolini L, Bini S, Toni A. In vitro testing of a novel limb salvage prosthesis for the distal femur. Clin Biomech (Bristol, Avon), 1998, 13:608-615.
[36] Avedian RS, Goldsby RE, Kramer MJ, et al. Effect of chemotherapy on initial compressive osseointegration of tumor endoprostheses. Clin Orthop Relat Res, 2007, 459:48-53.
[37] Bini SA, Johnston JO, Martin DL. Compliant prestress fxation in tumor prostheses: interface retrieval data. Orthopedics, 2000, 23:707-711.
[38] Kramer MJ, Tanner BJ, Horvai AE, et al. Compressive osseointegration promotes viable bone at the endoprosthetic interface: retrieval study of Compress implants. Int Orthop, 2008, 32:567-571.
[39] Healey JH, Morris CD, Athanasian EA, et al. Compress knee arthroplasty has 80% 10-year survivorship and novel forms of bone failure. Clin Orthop Relat Res, 2013, 471(3):774-783.
[40] Bhangu AA, Kramer MJ, Grimer RJ, et al. Early distal femoral endoprosthetic survival: cemented stems versus the Compress implant. Int Orthop, 2006, 30(6):465-472.
[41] Pedtke AC, Wustrack RL, Fang AS, et al. Aseptic failure: how does the Compress(®)implant compare to cemented stems? Clin Orthop Relat Res, 2012, 470(3):735-742.
[42] Shin DS, Choong PF, Chao EY, et al. Large tumor endoprostheses and extracortical bone-bridging: 28 patients followed 10-20 years. Acta Orthop Scand, 2000, 71(3):305-311.
[43] Schwartz AJ, Kabo JM, Eilber FC, et al. Cemented distal femoral endoprostheses for musculoskeletal tumor: improved survival of modular versus custom implants. Clin Orthop Relat Res, 2010, 468(8):2198-2210.
[44] Cannon CP, Zeegen E, Eckardt JJ. Operative techniques endoprosthetic reconstruction. Oper Tech Orthop, 2004, 14(4): 225-235.
[45] Kawai A, Lin PP, Boland PJ, et al. Relationship between magnitude of resection, complication, and prosthetic survival after prosthetic knee reconstructions for distal femoral tumors. J Surg Oncol, 1999, 70(2):109-115.
[46] Burchardt H, Glowczewskie FP, Enneking WF. The effect of adriamycin and methotrexate on the repair of segmental cortical autografts in dogs. J Bone Joint Surg (Am), 1983, 65(1): 103-108.
[47] Friedlaender GE, Tross RB, Doganis AC, et al. Effects of chemotherapeutic agents on bone :short-term methotrexate and doxorubicin (adriamycin)treatment in a rat model. J Bone Joint Surg (Am), 1984, 66(4):602-607.
[48] Arikoski P, Komulainen J, Riikonen P, et al. Impaired development of bone mineral density during chemotherapy: a prospectiveanalysis of 46 children newly diagnosed with cancer. J Bone Miner Res, 1999, 14(12):2002-2009.
[49] Arikoski P, Komulainen J, Riikonen P, et al. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab, 1999, 84:3174-3181.
[50] Bath LE, Crofton PM, Evans AEM, et al. Bone turnover and growth during and after chemotherapy in children with solid tumors. Pediatr Res, 2004, 55:224-230.
[51] van Leeuwen BL, Kamps WA, Jansen HWB, et al. The effect of chemotherapy on the growing skeleton. Cancer Treat Rev, 2000, 26:363-376.
[52] Hazan EJ, Hornicek FJ, Tomford W, et al. The effect of adjuvant chemotherapy on osteoarticular allografts. Clin Orthop Relat Res, 2001, 275:176-181.
[53] Dayer R, Rizzoli R, Kaelin A, et al. Low protein intake is associated with impaired titanium implant osseointegration. J Bone Min Res, 2006, 21:258-264.
( 本文编辑:王永刚 )
Aseptic loosening rate of megaprostheses and related factors
XIAO He, NIU Xiao-hui. Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, 100035, PRC
With the development of chemotherapy, imaging, surgical techniques and material science, limb-salvage has become a widely accepted concept in the treatment of bone and soft tissue tumors. Prosthetic reconstruction after tumor segment resection has become a common operation method. In the history, there appeared many kinds of materials for the reconstruction after the resection of tumors. The megaprosthesis has a history of more than 60 years, and has become the mainstream now, with many advantages over the other reconstruction materials. The aseptic loosening of megaprotheses is a common postoperative complication and also a prominent cause of prosthesis failure. How high is the aseptic loosening rate? Will the rate be affected by such factors as the patient’s age, gender, disease category, implantation site, reconstruction length, chemotherapy and so on? Will the rate be obviously reduced due to the improvement of megaprotheses? These questions are worth researching. The aseptic loosening rate of megaprostheses and related factors are reviewed in this article based on previous studies. According to previous reports, many factors concerning the patient and the prosthesis have an impact on the aseptic loosening rate. The clear and defnite related factors included the implantation site, porous coating in the collar, type of articulation, age at the time of surgery and reconstruction length, and the gender and disease category are irrelevant factors. As to the size of intramedullary stem, fxation mode, modular/custom and chemotherapy, their correlation with the aseptic loosening rate is still unclear.
Prosthesis failure; Prostheses and implants; Loose rate; Root cause analysis
10.3969/j.issn.2095-252X.2014.05.010
R738.1
100035 北京积水潭医院骨肿瘤科
2013-09-26 )