沈孝陵 张筱凤
胰腺癌是一类高度恶性的肿瘤,目前只有约7%的胰腺癌能被早期诊断,由于难以早期诊断及频繁发生的局部或者远处转移,只有15%~20%的患者最终可以接受根治术。尽管近年来对胰腺癌的研究在基础和临床方面均取得进展,但是胰腺癌的预后仍然严峻,总体5年生存率不到5%。研究表明[1-3],胰腺癌有很高的神经浸润(perineural invasion,PNI)发生率,甚至可高达100%[5]。这可能是胰腺癌转移的一种方式,也是胰腺癌复发的一个重要原因。PNI阳性患者总是与不良预后和低存活率相关[4-5]。
PNI为癌细胞侵犯神经外膜、神经束膜,甚至到达神经内膜和与之紧密联系的施旺细胞和神经元[6]。目前存在的“perineural invasion”和“neural invasion”概念的含义是相同的[7]。胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)是PNI发生率最高的肿瘤类型[2],但是肿瘤大小与PNI的发生无必然联系,即使是只有显微镜下才可见到的癌仍然可发生PNI[8]。PNI的发生与胰腺癌细胞的亲神经性和胰腺与神经丛的解剖位置极为贴近有关。神经丛的分布使癌细胞和神经之间形成良好的接触,癌细胞可以直接侵犯神经,也可以通过神经上的穿通管道(如血管和网状纤维的穿透部位)侵入神经内部[9]。因为神经外膜层内有淋巴管存在,多年来一直认为PNI是淋巴转移的延伸。近年来发现淋巴管未穿透神经外膜,故而排除了PNI与淋巴转移的关系。
1.神经营养因子及其受体:胰腺癌的PNI可以发生于疾病早期,所以推测可能存在某些神经分泌的因子在此过程中发挥作用,神经营养因子家族最初被认为是这些因子中的一类。神经营养因子指的是作用于神经系统,影响神经元和神经胶质细胞生长、分化、存活及其细胞周期的分子。它能增强细胞分化,诱导增殖,影响突触功能,防止神经细胞凋亡,具有细胞因子的多功能性、协同性和相互依赖性、相互制约性、自分泌和旁分泌性等特点。神经营养因子可以分为5大类:①神经营养因子(neurotrophins)家族,包括神经生长因子(nerve growth factor,NGF )、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、神经营养素(neurotrophin,NT)-3、NT-4等。②胶质细胞源性神经营养因子(glial cell line-derived neurotrophic flactor,GDNF)家族,包括GDNF、NTN (neurturin)、PSP(persephin)、ART/RNV(artemin/renovin)。③细胞因子(cytokines)家族,包括睫状神经营养因子(ciliary neurotrophic factor, CNTF)、白介素-6(IL-6)、白血病抑制因子(leukemia inhibitory factor,LIF)及心肌营养素-1(cardiotrophin-1,CT-1)。④成纤维细胞生长因子(fibroblast growth factor,FGF)家族:aFGF, bFGF。⑤其他类:包括胰岛素样生长因子(insulin-like growth factors,IGF)、表皮生长因子(epidermal growth factor,EGF)、血小板源性生长因子(platelet derived growth factor,PDGF)等。
神经营养因子受体分为两种,一种是高亲和力的酪氨酸激酶受体(tyrosine kinase receptors,Trk),包括TrkA、TrkB和TrkC;一种是低亲和力的受体p75NTR。3种Trk均为跨膜分子,以不同的亲和力与NGF、BDNF、NT-3、NT-4相结合。NGF优先与TrkA结合,而BDNF、NT-4优先与TrkB结合[10-11],NT-3优先与TrkC结合[12],三者均能诱导促生存信号。p75NTR是跨膜糖蛋白,隶属于肿瘤坏死因子超家族,无论TrkA、B、C存在与否,均能促进细胞生存或诱导细胞凋亡[13]。
1999年Zhu等[14]第一次证明NGF及其受体TrkA在胰腺癌PNI中起作用,之后陆续有报道胰腺癌细胞及其周围神经中神经营养因子家族和其受体TRKA、p75NTR表达水平升高[15-16]。Schneider等[16]报道,TrkA在导管、胰岛和癌细胞中均表达,TrkB仅在胰岛的α-细胞中表达,TrkC的着色程度及分布与TrkA相似;p75NTR在神经组织中表达,在正常组织中仅散在存在。导管和腺泡细胞以及神经组织和癌细胞中均有不同程度的NGF表达。NT-3在毛细血管内皮和红细胞中表达,NT-4特异性地在导管细胞中表达。该结果提示胰腺癌细胞自分泌NGF增强,通过激活MAPK途径发挥有丝分裂效应[17],并通过旁分泌作用促进PNI发生。Ma等[18]证实胰腺癌中NGF和TrkA过表达能促进神经的病理性增长,联合抑制NGF和TrkA或许能起到抑制肿瘤的目的。Wang等[19]证实报道,p75NTR的表达水平和胰腺癌PNI之间存在正相关。将p75NTR转染胰腺癌细胞后细胞对化学趋化性的反应性迁移显著增强,表明p75NTR在胰腺癌细胞的迁移中起作用,也可能在PNI中起作用。
Ketterer等[24]报道,胰腺癌中BDNF、NT-3和NT-4表达均升高,将T3M4期胰腺癌细胞与背根神经细胞共培养后癌细胞强表达TrkB和p75NTR,细胞增殖明显增强。但Schneider等[16]报道胰腺癌中BDNF、NT-3和NT-4表达均不升高。
GDNF被认为是胰腺癌细胞的化学引诱物,在肿瘤的进展、迁移、侵袭的过程中发挥重要作用[21]。有PNI的胰腺癌GDNF阳性率显著高于无PNI的胰腺癌[22]。胰腺癌细胞系SW1990、CAPAN-2、MiaPaCa-2、BxPC3与GDNF共培养后,细胞对细胞外基质蛋白如Ⅰ型胶原、层黏连蛋白、纤连蛋白等的趋向性增强,整合素的表达增加;使用整合素抑制剂后可以抑制细胞对细胞外基质的粘附能力,提示GDNF引起的整合素表达改变在胰腺癌的侵袭和转移行为中发挥重要作用[23-24]。另外,GDNF还可以激活基质金属蛋白酶(MMP),引起细胞恶性程度增加。
2.趋化因子:趋化因子是肿瘤炎性环境的重要组成部分[25]。趋化因子及其受体已经被证明在肿瘤细胞局部侵犯和远处转移中起重要作用。趋化因子也能提供增殖信号使得肿瘤细胞能在远处器官中生存。Marchee等[26]报道,PDAC强表达趋化因子受体CX3CR1,而正常胰腺上皮细胞不表达。CX3CR1高表达与PNI呈相关,且与术后早期复发相关。CX3CR1专一性地结合跨膜趋化因子CX3CL1。神经细胞大量表达CX3CL1,其主要是介导内皮细胞与神经细胞的粘附。CX3CR1阳性表达的PDAC细胞通过激活Gi蛋白和黏附分子(β1-整合素和黏着斑激酶)向CX3CL1配体迁移,特别是神经细胞[26]。因此,CX3CL1-CX3CR1信号通路可能是将来减少PNI发生的一个有前景的靶点[27]。
另外,轴突引导分子脑信号蛋白3A(SEMA3A)及其受体神经丛状蛋白A1(PLXNA1)和神经纤毛素1(NRP1)在胰腺癌组织中高表达,且与患者生存期缩短和肿瘤侵袭性、转移潜力增强相关。尽管92%的患者表现出PNI,但SEMA3A表达与PNI状态之间未发现有明显的关联[28]。
3.基质金属蛋白酶(MMPs):MMPs几乎能降解ECM中的各种蛋白成分,破坏肿瘤细胞侵袭的组织学屏障,在肿瘤侵袭转移中起关键性作用,Kilian等[29]报道,应用MMP抑制剂Ro 28-2653可以有效抑制MMP-2和MMP-9表达,显著降低胰腺导管腺癌肝转移的发生。胰腺星状细胞是MMP-2的重要来源,可以促进胰腺癌细胞的侵袭性[30],也与胰腺癌的PNI有密切关系[31]。自主神经递质去甲肾上腺素也可以通过上调MMP-2的表达来增强胰腺癌细胞的侵袭性,启动神经侵犯,激活癌细胞促生存信号通路[31]。在GDNF和NGF刺激下亦会增强胰腺癌细胞MMP-2和MMP-9的表达,有助于胰腺癌PNI的发生[32-33]。
4.有助于PNI的差异化表达基因:通过胰腺癌微阵列分析,比较高频率PNI和低频率PNI的胰腺癌细胞系裸鼠皮下移植瘤组织的差异表达蛋白,发现高频率PNI的胰腺癌细胞系的CD74表达上调,而低频率PNI的细胞系中表达下调,说明HLA Ⅱ类分子的稳定链(CD74)可能在PNI过程中起作用[34]。Nagata等[35]报道,PDAC患者的CD74表达水平与PNI相关,CD74是一个独立的预后因素。
其他表达上调的分子包括丝氨酸蛋白酶组织纤溶酶原激活物和γ-同型核蛋白(γ-synuclein),后者对维持中枢神经系统的功能和发育有重要作用。它在肿瘤细胞中异常表达,是患者不良预后和无病生存期降低的强烈指标。应用shRNA沉默γ-synuclein的表达可以降低PNI和肝转移的程度。由于在胰腺癌患者的血样和尿样中能检测到,故认为γ-synuclein很有可能成为疾病早期诊断标志物,当然也可能成为疾病治疗的靶点。
在神经细胞和肿瘤细胞共培养的PNI体外模型中观察到胰腺癌细胞定向向神经元迁移,神经元也向胰腺癌细胞的方向生长出突触。进一步通过与神经元突出相接触的胰腺癌细胞的基因表达谱的分析[48],发现了一些促生存基因表达上调,如黏膜相关淋巴组织淋巴瘤易位基因1(mucosa-associated lymphoid tissue lymphoma translocation gene 1,MALT1)和肿瘤坏死因子受体相关因子(tumor-necrosis-factor-receptor-associated factor,TRAF)[36],同时癌细胞增殖增加,凋亡减少,这些基因可能有助于癌细胞的神经侵犯。
Abiatari等[37]检测了PNI体外共培养体系中的癌细胞的转录组表达谱。他们发现驱动蛋白家族成员14(kinesin family member 14,KIF14))表达显著下调,RHO-GDP 解离抑制剂-β(RHO-GDP dissociation inhibitor-β,ARHGDIbeta)表达上调,KIF14与PNI呈负相关,下调KIF14的表达会增强细胞的PNI能力。KIF是一种细胞分裂驱动蛋白,在分裂的细胞中增多,敲除后会导致细胞多核化和凋亡,在很多恶性疾病中表达上调,且与不良预后相关,这观点与该实验结果不同。猜测可能存在某种负反馈机制使得KIF14在其他一些恶性疾病中高表达。Abiatari等[37]又发现敲除ARHGDIβ的癌细胞的侵袭转移和生存能力未见明显降低,只是PNI能力明显降低,认为ARHGDIβ在胰腺癌中可以促进PNI。他们还发现微管相关蛋白质RP/EB家族成员2(microtubule-associated protein RP/EB family member 2,MAPRE2)也在表现出PNI的胰腺癌细胞克隆中过表达,并且与患者的低生存率有关[35]。
5.其他一些重要的大分子:文献报道,在胰腺癌活检标本中发现了高水平的造血集落刺激因子G-CSF和GM-CSF,且对应地在胰腺神经中发现了它们的受体表达(G-CSFR和GM-CSFRα),说明这些细胞因子可能在肿瘤与神经相互作用的过程中起作用[39]。Swanson等[40]的研究发现,胰腺癌细胞中的黏蛋白1(MUC1)和雪旺细胞中的髓磷脂相关糖蛋白(MAG)相互作用增强与PNI有关。除了作为MAG的优先配体外,胰腺癌细胞中MUC1的胞质尾区的差异化的磷酸化导致了细胞增殖和转移信号通路的激活[57]。因此,MUC1-MAG信号通路不仅导致胰腺癌细胞侵袭和增殖增强,也通过辅助胰腺癌细胞和雪旺细胞之间产生联系从而在PNI中起作用。此外,还有报道一些黏附分子如神经细胞黏附分子(NCAM)和L1细胞黏附分子(L1CAM)也在胰腺癌的PNI中发现,但至今仍缺乏相关实验。
胰腺癌PNI的分子机制及其复杂,目前已知的仍然很少,而且大多数实验关注的是神经与肿瘤细胞之间的相互作用,很少有人关注肿瘤基质和微环境的变化。今后还需要更加精确的动物模型来模拟体内胰腺癌PNI的生物学过程,最终将研究成果转化到早期诊断和靶向药物的开发上。
参 考 文 献
[1] Nakao A, Harada A, Nonami T, et al. Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer[J]. Pancreas, 1996,12(4):357-361.
[2] Pour PM, Bell RH, Batra SK. Neural invasion in the staging of pancreatic cancer[J]. Pancreas, 2003,26(4):322-325.
[3] Liu B, Lu KY. Neural invasion in pancreatic carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2002,1(3):469-476.
[4] Marchesi F, Piemonti L, Mantovani A, et al. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis[J]. Cytokine Growth Factor Rev,2010,21(1):77-82.
[5] Huh JW, Kim HR, Kim YJ. Prognostic value of perineural invasion in patients with stage II colorectal cancer[J]. Ann Surg Oncol,2010,17(8):2066-2072.
[6] Liebig C, Ayala G, Wilks JA, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009,115(15):3379-3391.
[7] Demir IE, Ceyhan GO, Liebl F, et al. Neural invasion in pancreatic cancer: the past, present and future[J].Cancers, 2010, 2(3):1513-1527.
[8] Kimura W, Morikane K, Esaki Y, et al. Histologic and biologic patterns of microscopic pancreatic ductal adenocarcinomas detected incidentally at autopsy[J]. Cancer, 1998,82(10):1839-1849.
[9] Kayahara M, Nakagawara H, Kitagawa H, et al. The nature of neural invasion by pancreatic cancer[J]. Pancreas, 2007,35(3):218-223.
[10] Friedman WJ, Greene LA. Neurotrophin signaling via Trks and p75[J]. Exp Cell Res, 1999,253(1):131-142.
[11] Yuan S, Rosenberg L, Paraskevas S, et al. Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture[J]. Differentiation, 1996,61(1):67-75.
[12] Lamballe F, Klein R, Barbacid M. TrkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3[J]. Cell, 1991, 66(5):967-979.
[13] Rabizadeh S, Oh J, Zhong LT, et al. Induction of apoptosis by the low-affinity NGF receptor[J]. Science,1993,261(5119):345-348.
[14] Zhu Z, Friess H, diMola FF, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer[J]. J Clin Oncol,1999,17(8):2419-2428.
[15] Miknyoczki SJ, Lang D, Huang L, et al. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior[J]. Int J Cancer, 1999,81(3):417-427.
[16] Schneider MB, Standop J, Ulrich A, et al. Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer[J]. J Histochem Cytochem,2001,49(10):1205-1210.
[17] Dang C, Zhang Y, Ma Q, et al. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer[J]. J Gastroenterol Hepatol,2006,21(5): 850-858.
[18] Ma J, Jiang Y, Jiang Y, et al. Expression of nerve growth factor and tyrosine kinase receptor A and correlation with perineural invasion in pancreatic cancer[J]. J Gastroenterol Hepatol, 2008,23(12):1852-1859.
[19] Wang W, Zhao H, Zhang S, et al. Patterns of expression and function of the p75(NGFR) protein in pancreatic cancer cells and tumours[J]. Eur J Surg Oncol, 2009,35(8):826-832.
[20] Ketterer K, Rao S, Friess H, et al.Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer[J].Clin Cancer Res,2003,9(14):5127-5136.
[21] Veit C, Genze F, Menke A, et al. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells[J]. Cancer Res, 2004,64(15):5291-5300.
[22] Zeng Q, Cheng Y, Zhu Q, et al. The relationship between overexpression of glial cell-derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer[J]. J Int Med Res, 2008,36(4):656-664.
[23] Funahashi H, Takeyama H, Sawai H, et al. Alteration of integrin expression by glial cell line-derived neurotrophic factor (GDNF) in human pancreatic cancer cells[J]. Pancreas, 2003,27(2):190-196.
[24] Funahashi H, Okada Y, Sawai H, et al. The role of glial cell line-derived neurotrophic factor (GDNF) and integrins for invasion and metastasis in human pancreatic cancer cells[J]. J Surg Oncol, 2005,91(1):77-83.
[25] Mantovani A, Savino B, Locati M, et al. The chemokine system in cancer biology and therapy[J].Cytokine Growth Factor Rev, 2010,21(1):27-39.
[26] Marchesi F, Piemonti L, Fedele G, et al. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma[J]. Cancer Res,2008,68(21):9060-9069.
[27] Marchesi F, Locatelli M, Solinas G, et al. Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer[J]. J Neuroimmunol ,2010,224(1-2):39-44.
[28] Müller MW, Giese NA, Swiercz JM, et al. Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer[J]. Int J Cancer, 2007,121(11):2421-2433.
[29] Kilian M, Gregor JI, Heukamp I, et al. Matrix metalloproteinase inhibitor RO 28-2653 decreases liver metastasis by reduction of MMP-2 and MMP-9 concentration in BOP-induced ductal pancreatic cancer in Syrian Hamsters: inhibition of matrix metalloproteinases in pancreatic cancer[J].Prostaglandins Leukot Essent Fatty Acids,2006,75(6):429-434.
[30] Schneiderhan W, Diaz F, Fundel M, et al. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay[J]. J Cell, 2007,120(3):512-519.
[31] Ihsan Ekin Demir, Helmut Friess,Güralp O. Ceyhan, et al. Nerve-cancer interactions in the stromal biology of pancreatic cancer[J]. Front Physiol,2012,3:97.
[32] Okada Y, Eibl G, Duffy JP, et al. Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer[J]. Surgery, 2003,134(2):293-299.
[33] Okada Y, Eibl G, Guha S, et al. Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells[J]. Clin Exp Metastasis, 2004,21(4):285-292.
[34] Koide N, Yamada T, Shibata R, et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer[J]. Clin Cancer Res, 2006,12(8):2419-2426.
[35] Nagata S, Jin YF, Yoshizato K, et al. CD74 is a novel prognostic factor for patients with pancreatic cancer receiving multimodal therapy[J]. Ann Surg Oncol,2009, 16(9):2531-2538.
[36] Dai H, Li R, Wheeler T, et al. Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach[J]. Hum Pathol,2007,38(2):299-307.
[37] Abiatari I, Deoliveira T, Kerkadze V, et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma[J]. Mol Cancer Ther, 2009,8(6):1494-1504.
[38] Abiatari I, Gillen S, DeOliveira T, et al. The microtubule-associated protein MAPRE2 is involved in perineural invasion of pancreatic cancer cells[J]. Int J Oncol,2009,35(5):1111-1116.
[39] Schweizerhof M, Stosser S, Kurejova M, et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain[J]. Nat Med,2009,15(7):802-807.
[55] Swanson BJ, McDermott KM, Singh PK, et al. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion[J]. Cancer Res,2007,67(21):10222-10229.
[40] Swanson BJ, McDermott KM, Singh PK, et al. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec_4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion[J]. Cancer Res,2007,67(21):10222-10229.