赖克方,方章福,姚红梅
咳嗽高敏感综合征:不明原因慢性咳嗽的新概念
赖克方,方章福,姚红梅
赖克方,教授,博士研究生导师。广州医学院第一附属医院、广州呼吸疾病研究所、呼吸疾病国家重点实验室临床研究部主任,中华医学会呼吸病学分会哮喘学组副组长,欧洲呼吸协会(ERS)特邀会员,港澳胸科协会联合会员,《咳嗽诊治通讯》主编,《中华哮喘杂志》常务编委,《中华肺部疾病杂志》、《国际呼吸杂志》和《中国临床医生》杂志编委。从事呼吸内科临床、科研与教学工作20余年,研究方向为慢性咳嗽与支气管哮喘的诊治及发病机制。负责国家“863”重大科技计划、国家“十一五”攻关课题、国家自然科学基金、教育部重点攻关课题等课题10余项。在国内率先开展了不明原因慢性咳嗽的病因诊断、治疗及发病机制的系统研究,建立了诱导痰、咳嗽激发试验、食管pH值监测等慢性咳嗽检查方法;提出了适合我国国情的慢性咳嗽诊断程序;调查国内慢性咳嗽的病因分布,发现嗜酸细胞性支气管炎、胃食管反流等是慢性咳嗽的常见病因;是我国首部《咳嗽的诊断与治疗指南》的起草者。在国内外期刊发表论文100余篇,主编专著《慢性咳嗽》,参编呼吸内科学和支气管哮喘等相关专著10部。获省级科技进步二等奖1项、三等奖2项,市级科技进步一等奖1项。
慢性咳嗽是患者就医最常见的原因之一。多数慢性咳嗽患者可以获得明确的病因诊断。然而,有一部分慢性咳嗽患者在进行了全面检查后,病因仍无法明确。这类慢性咳嗽患者主要表现为咳嗽敏感性的增高,既往称为慢性特发性咳嗽或者不明原因慢性咳嗽,是慢性咳嗽治疗的难点。最近,有学者提出咳嗽高敏感综合征的概念以定义这一类慢性咳嗽患者。本文主要综述咳嗽高敏感综合征的病理生理与神经生理机制、诊断及治疗方法的研究进展。
咳嗽高敏感综合征;咳嗽敏感性;神经生理机制;诊断;治疗
咳嗽是呼吸系统重要的防御反射,具有防止异物误吸及清除气道分泌物的作用,其功能受损或敏感性增高都会对人体造成伤害[1]。咳嗽是临床上最常见的病症之一。一项针对中国大学生的咳嗽流行病学调查结果显示,咳嗽的总患病率为11%[2];在西方国家,社区咳嗽的患病率为9%~33%[3-4]。Irwin等[5]学者在1981年首次应用解剖学程序对慢性咳嗽患者进行病因诊断,此后咳嗽的病因学研究在国内及国外相继展开[6-10]。这些研究结果显示,慢性咳嗽的常见病因包括上气道咳嗽综合征(upper airway cough syndrome)[11]、嗜酸性粒细胞性支气管炎(eosinophilic bronchitis)[12]、咳嗽变异性哮喘(cough variant asthma)[13]及胃食管反流性咳嗽(gastroesophageal reflux-related cough)。病因明确的患者经过病因治疗均能得到有效缓解。但是,有一部分患者经过全面检查后仍未能明确病因,既往称为慢性特发性咳嗽(chronic idiopathic cough)或不明原因慢性咳嗽(unexplained chronic cough)[14-16],这类患者是目前慢性咳嗽治疗的难点,而咳嗽敏感性增高是此类患者的重要临床与病理生理特征。近年来提出咳嗽高敏感综合征(cough hypersensitivity syndrome,CHS)的概念来描述此类慢性咳嗽患者[17-20]。本文对CHS的定义、临床特征、病理生理学机制及治疗研究进展进行综述。
咳嗽敏感性(cough re fl ex sensitivity)是指机体在接受外界刺激(包括化学、机械、温热)时,表现出来的咳嗽难易程度。目前CHS的主要定义为咳嗽敏感性升高、全面检查仍不能归于已知病因的一些特发性慢性咳嗽患者[20-21]。与此相类似,Chung[18]将CHS定义为咳嗽时间持续超过8周,伴典型的刺激症状或感觉,并表现出咳嗽敏感性增高,其中咳嗽高敏感性是CHS定义中最主要的特征。CHS的临床特征主要表现为慢性刺激性干咳,对一种或者多种咳嗽激发物如冷空气、讲话及气味等敏感,咽喉部存在咳嗽冲动,并严重影响患者生活质量[20]。另外,CHS患者以中年女性较为常见[22],经常以上呼吸道感染作为起病的首发因素[14]。
咳嗽敏感性增高及其相关通路改变是CHS的主要发病机制。每一次自主咳嗽反射都是由完整的咳嗽反射弧参与完成的,该反射弧的组成包含咳嗽外周感受器、迷走传入神经、咳嗽高级中枢、传出神经及效应器(膈肌、喉、胸部和腹肌群等),所以咳嗽反射的任意一个环节出现异常均可能引起咳嗽敏感性的增高,从而引发CHS。
2.1 评估 目前临床应用最广泛的是化学物质激发的咳嗽敏感性检测,常见的激发物包括辣椒素、柠檬酸,均以定量的方式吸入[23];其在方法学上与支气管激发试验相似,目前已被写进中国[24]及欧洲[25]咳嗽诊治指南。吸入化学物质的咳嗽激发试验主要反映特定的外周化学感受器介导的咳嗽反射,不能有效检测其他通路介导的咳嗽敏感性。有报道利用吸入氨水引起的声门闭合反射(glottic-stop reflex)来评估咳嗽敏感性,该方法还能区分慢性咳嗽患者与正常人的敏感性,其声门闭合反射的敏感性与辣椒素咳嗽敏感性具有显著相关性[26]。此外,日本学者报道了机械性刺激颈部气管激发咳嗽评估患者咳嗽敏感性的方法[27]。但后两种方法在临床中的应用经验有限,还需要进一步评估。
2.2 咳嗽敏感性的影响因素 Choudry等[28]的研究结果表明,伴鼻后滴流症状的慢性咳嗽患者辣椒素C2(刺激咳嗽次数≥2次时的辣椒素浓度)、C5(刺激咳嗽次数≥5次时的辣椒素浓度)显著高于支气管哮喘患者、服用ACEI药物者及胃食管反流患者。Nieto等[29]的研究则表明伴支气管哮喘以及胃食管反流的慢性咳嗽患者辣椒素咳嗽敏感性显著高于正常组和鼻后滴流组。马千里等[30]观察了108例慢性咳嗽患者的辣椒素咳嗽敏感性,结果表明胃食管反流组患者的咳嗽敏感性显著高于咳嗽变异性哮喘组和上气道咳嗽综合征组。Birring等[19-20]将咳嗽高敏感性分为可逆性与持续性,可逆性咳嗽高敏感性见于感冒后咳嗽、ACEI类咳嗽、咳嗽变异性哮喘及嗜酸细胞性支气管炎,持续性咳嗽高敏感性则主要见于不明原因的慢性咳嗽。Kastelik等[31]观察了慢性咳嗽患者的柠檬酸及辣椒素咳嗽敏感性,结果发现女性慢性咳嗽患者柠檬酸及辣椒素的C2、C5均显著低于男性慢性咳嗽患者,同样,Kelsall等[32]的研究也显示不明原因慢性咳嗽患者柠檬酸咳嗽敏感性在女性中明显高于男性。这些结果在一定程度上解释了CHS以中年女性为主的原因。
2.3 病理生理学机制 目前咳嗽高敏感性的机制尚未完全明确,瞬时受体电位(transient receptor potential,TRP)通路激活、气道炎症及咳嗽中枢易化被认为参与了咳嗽高敏感性的发生发展过程。
2.3.1 TRP通路激活 TRP通道蛋白首次从果蝇体内分离获得,由于其对强光反应表现为瞬时性,因此被命名为瞬时受体电位通道[33]。TRP通道由6个跨膜多肽亚单位组成,大部分细胞都有此类通道蛋白的表达,主要感受细胞内外的信号如化学刺激、机械刺激、温度变化及渗透压等[34]。目前发现哺乳动物TRP家族有28个成员,根据氨基酸序列同源性分为6个亚家族,包括TRPC、TRPV、TRPM、TRPA、TRPP及TRPML[35]。有些TRP通道与感官知觉相关[36],亦有研究发现TRP通道参与了呼吸系统疾病如慢性阻塞性肺疾病、支气管哮喘、肺纤维化等的发病[37-39]。
瞬时受体电位香草酸亚型1(transient receptor potential vaniloid 1,TRPV1)为非选择性阳离子通道,是首个被证实能够介导豚鼠咳嗽反射的TRP通道[40]。随后TRPV1被成功克隆[36],上述观点进一步得到验证。TRPV1的主要激发物包括辣椒素、热、酸以及内源性大麻素等[36,41-42],是目前研究最多的咳嗽相关TRP通道。Watanabe等[43]利用免疫组织化学技术定位TRPV1豚鼠在气道中的分布,结果显示其主要分布于气管、支气管及肺泡的神经轴突。Groneberg等[44]利用免疫荧光方法检测慢性咳嗽患者及正常人支气管镜活检标本中TRPV1的表达,发现慢性咳嗽患者支气管上皮中TRPV1阳性荧光表达量显著高于健康对照者,且与辣椒素咳嗽敏感性显著相关。
与TRPV1类似,另外一个TRP通道瞬时受体电位锚蛋白1 (transient receptor potential ankyrin 1,TRPA1)为非选择性钙离子通道。TRPA1首先在人类肺成纤维细胞中分离[45],广泛分布于感觉神经元细胞[46-47]。TRPA1的主要激发物包括丙烯醛、肉桂醛、冷空气、机动车尾气及香烟烟雾等[48]。Andre等[49]利用TRPA1激动剂肉桂醛、异硫氰酸烯丙酯吸入激发豚鼠咳嗽敏感性增高,该效应能被TRPA1选择性拮抗剂HC-030031抑制。Birrell等[50]发现吸入TRPA1激动剂丙烯醛、肉桂醛能够分别在豚鼠和健康人类志愿者中引发咳嗽,而且豚鼠的咳嗽效应能被拮抗剂HC-030031抑制。
参与咳嗽敏感性的TRP通道还包括TRPM8。作为温度感受器,当温度<15℃或接触凉味剂如薄荷醇、Icilin时,TRPM8可被激活,从而降低咳嗽敏感性[51]。Millqvist等[52]开展了一项吸入薄荷醇的随机双盲实验,共纳入对环境刺激敏感的慢性咳嗽患者14例,结果显示吸入薄荷醇组患者辣椒素咳嗽敏感性显著低于吸入安慰剂组,提示薄荷醇能通过TRP通道降低咳嗽敏感性。最近Plevkova等[53]报道豚鼠经口给予薄荷醇(100mg/kg)后能显著抑制柠檬酸激发的咳嗽敏感性,该效应与豚鼠鼻部三叉神经的TRPM8表达升高相关。在哺乳动物中,TRP家族包含了至少28个通道[34],其余通道与咳嗽敏感性的关系还有待进一步研究。
2.3.2 气道炎症 Birring等[54-55]发现慢性特发性咳嗽患者中伴有器官特异性自身免疫性疾病的比例(59%)明显高于对照组(12%),且慢性特发性咳嗽患者支气管肺泡灌洗液(BALF)中淋巴细胞的比例(10%)显著高于正常对照组(6.3%)及咳嗽病因明确组(5.2%)。Mund等[56]进一步研究发现,在以干咳为主的慢性原发性咳嗽女性患者中,BALF中CD3+、CD4+淋巴细胞总数显著高于健康对照组。然而这种特异性气道炎症提高咳嗽敏感性的机制尚有待进一步研究。Boulet等[57]发现非哮喘性慢性咳嗽患者BALF中的炎症细胞数目显著增加,支气管活检可见支气管上皮脱落及以单核细胞浸润为主的炎症。此外,当气道存在非特异性炎症时,机体可分泌内源性炎性介质如前列腺素(PG)及血管舒张肽。既往研究证实PGE2及缓激肽能够敏化咳嗽反射,致使辣椒素咳嗽敏感性增高[58],其机制与PGE2、缓激肽激活了蛋白激酶C,从而敏化TRPV1通道有关[59-60]。Grace等[61]进一步证实PGE2及缓激肽作为激发物能引起TRPV1及TRPA1通路诱导的豚鼠咳嗽敏感性增高。暴露于大气污染物引起的气道炎症与咳嗽敏感性的关系亦有报道,如McLeod等[62]将豚鼠暴露于二氧化硫(1000ppm,3h/d,连续4d),结果显示豚鼠的辣椒素咳嗽敏感性增高,而该效应能被地塞米松抑制。
2.3.3 咳嗽中枢易化 目前观点认为,延髓孤束核(nucleus tractus solitarius)参与了咳嗽中枢反射的调节。Lindsey等[63]和Shannon等[64]的研究发现外界刺激信号经迷走神经传入,经由靠近或位于孤束核内的不同亚核二级神经元处理、整合并输出。最近脑功能核磁共振显像技术已用于检测与人类咳嗽控制相关的大脑区域。Mazzone等[65]的研究中将10例正常人以伪随机的方式分别纳入吸入辣椒素组或吸入生理盐水组(对照组),记录各组咳嗽冲动并进行功能性脑显像,结果显示辣椒素能稳定地诱导咳嗽冲动,并与大脑皮层的激活相关,提示皮层神经网络可能参与了人类咳嗽的调控。当机体处于应激状态或者暴露于环境污染物时,孤束核神经元细胞可出现神经可塑性改变[66-67]。Joad等[68]使豚鼠暴露于香烟(1mg/m3,6h/d,5d/周)环境,暴露5周后豚鼠柠檬酸咳嗽敏感性显著增高,第6周分别注射P物质拮抗剂SR140333(拮抗神经激肽1受体),结果显示SR140333能显著抑制香烟暴露的豚鼠咳嗽敏感性,提示孤束核通过释放P物质,引起咳嗽敏感性增高。
目前CHS的治疗选择仍然有限,根据其定义以及病理生理学特征,在处理时主要以降低咳嗽敏感性为目的,包括药物治疗手段及非药物治疗手段。
3.1 药物治疗选择
3.1.1 神经调节因子类药物 神经调节因子类药物是指神经递质γ-氨基丁酸(GABA)受体激动剂,主要包括加巴喷丁(gabapentin)、阿米替林(amitriptyline)、巴氯芬(baclofen)等。Ryan等[69]的随机、双盲、对照研究中纳入62例难治性慢性咳嗽患者,观察到加巴喷丁能显著改善慢性咳嗽患者咳嗽相关生活质量,咳嗽频率及咳嗽严重程度(VAS评分)均较安慰剂组显著下降,而且患者能较好耐受加巴喷丁的副作用。Jeyakumar等[70]在另外一项随机对照试验中纳入28例慢性咳嗽患者,分为阿米替林治疗组及可待因/愈创甘油醚组,结果显示阿米替林治疗组咳嗽相关生活质量改善率明显高于可待因/愈创甘油醚组。此外在Dicpinigaitis等[71]的报道中,2例难治性慢性患者在使用巴氯芬后咳嗽频率及严重程度均下降,辣椒素咳嗽敏感性显著下降;与此类似,国内Xu等[72]报道了3例胃食管反流引起的难治性慢性咳嗽患者,在尝试抗反流治疗无效后,给予巴氯芬(20mg,3次/d)口服代替抗反流药物,1~4周后咳嗽症状明显缓解,咳嗽症状积分及辣椒素咳嗽敏感性均显著下降。
3.1.2 其他镇咳药物 目前已知效果最好的中枢性镇咳药物如可卡因、吗啡等因具有成瘾性,在临床的应用受到限制[73]。Lim等[74]回顾性分析了165例成年患者雾化吸入利多卡治疗难治性咳嗽的疗效,结果显示治疗后咳嗽症状VAS积分显著降低,在完成治疗的92例患者中,49%的患者咳嗽症状得到缓解。
3.1.3 正在研制的药物 一些分子靶向药物如TRPV1受体拮抗剂、选择性大麻素受体激动剂(CB2 agonist)、钾离子通道开放剂(maxi-K channel)等被证实能起到一定的镇咳作用[75]。Smith等[76]在一项双盲、对照试验中应用口服TRPV1受体拮抗剂SB705498治疗不明原因慢性咳嗽患者,初步结果显示用药组2h后辣椒素C5阈值是安慰剂组的4倍,而用药组与安慰剂组的24h咳嗽次数无明显差异。
3.2 非药物治疗选择 非药物治疗手段包括语言病理治疗及咳嗽抑制性生理治疗,统称为咳嗽抑制性治疗(cough suppression therapy,CST)。CST在改善患者咳嗽相关生活质量、降低咳嗽敏感性及咳嗽频率方面显示出一定效果。根据病情需要,CST治疗分为2~4期[77],主要内容包括教育患者何为咳嗽敏感性、咳嗽高敏感性以及反复大量咳嗽的危害;注意喉部卫生如尽量用鼻子呼吸,减少环境刺激物的吸入以及增加水的摄入频率及摄入量;控制咳嗽发生如辨认咳嗽的激发物,善于利用抑制咳嗽冲动的技巧以及学会改变呼吸的方式;提供心理教育辅导如鼓励自主性咳嗽,树立治疗目标以及排除心理压力等[78-81]。Vertigan等[78]在一项随机对照试验中纳入87难治性慢性咳嗽患者,随机分为语言病理治疗组及安慰剂对照组,治疗周期为2个月,结果显示语言病理治疗组患者的咳嗽、呼吸、发声及上气道积分改善程度显著高于安慰剂对照组。随后,Ryan等[80-81]报道难治性咳嗽患者接受语言康复疗法治疗后,咳嗽相关生活质量(LCQ积分)显著提高,而辣椒素咳嗽敏感性以及咳嗽频率显著下降。Patel等[79]在一项前瞻性研究中观察了23例难治性慢性咳嗽患者接受咳嗽抑制性生理治疗2个月前后的健康状况变化,结果显示治疗后患者咳嗽相关生活质量积分(LCQ)显著升高,咳嗽频率显著下降。
CHS概念的提出对认识慢性咳嗽的病理生理机制及促进咳嗽新药开发有重要意义。咳嗽敏感性增高是CHS患者的主要临床和病理生理学特征。临床上咳嗽敏感性的检测方法目前仍主要依赖于吸入TRPV1激动剂如辣椒素或柠檬酸诱导咳嗽反射,对于其他通道介导的咳嗽敏感性尚不能有效检测。未来的研究方向主要在于进一步完善临床咳嗽敏感性激发方法,使咳嗽敏感性的检查结果更具临床价值,并在认识咳嗽敏感性增高机制的前提下,进一步开发新型的、副作用小的分子靶向药物,以满足临床需要。
[1] Liu YN. Chronic cough: An emerging challenge for respiratory physicians[J]. Med J Chin PLA, 2014, 39(5): 342.[刘又宁. 慢性咳嗽:呼吸科医生面临的新挑战[J]. 解放军医学杂志, 2014, 39(5): 342.]
[2] Chen RC, Lai KF, Liu CL, et al. An epidemiologic study of cough in young college students in Guangzhou[J]. Chin J Epidemiol, 2006, 27(2):123-126. [陈如冲, 赖克方, 刘春丽, 等. 广州地区1087 名大学生咳嗽的流行病学调查[J]. 中华流行病学杂志, 2006, 27(2): 123-126.]
[3] Morice AH. Epidemiology of cough[J]. Pulm Pharmacol Ther, 2002, 15(3): 253-259.
[4] Chung KF, Pavord ID. Prevalence, pathogenesis, and causes of chronic cough[J]. Lancet, 2008, 371(9621): 1364-1374.
[5] Irwin RS, Corrao WM, Pratter MR. Chronic persistent cough in the adult: the spectrum and frequency of causes and successful outcome of specific therapy[J]. Am Rev Respir Dis, 1981, 123(4 Pt 1): 413-417.
[6] Lai KF, Chen RC, Liu CL, et al. Etiology and a diagnostic protocol for patients with chronic cough [J]. Chin J Tuberc Respir Dis, 2006, 29(2):96-99.[赖克方, 陈如冲, 刘春丽, 等. 不明原因慢性咳嗽的病因分布及诊断程序的建立[J]. 中华结核和呼吸杂志, 2006, 29(2): 96-99.]
[7] Lai K, Chen R, Lin J, et al. A prospective, multicenter survey on causes of chronic cough in China[J]. Chest, 2013, 143(3): 613-620.
[8] Poe RH, Harder RV, Israel RH,et al. Chronic persistent cough. Experience in diagnosis and outcome using an anatomic diagnostic protocol[J].Chest, 1989, 95(4): 723-728.
[9] Irwin RS, Curley FJ, French CL. Chronic cough. The spectrum and frequency of causes, key components of the diagnostic evaluation, and outcome of specific therapy[J]. Am Rev Respir Dis, 1990, 141(3): 640-647.
[10] Kastelik JA, Aziz I, Ojoo JC, et al. Investigation and management of chronic cough using a probability-based algorithm[J]. Eur Respir J, 2005,25(2): 235-243.
[11] Wang DY. Upper airway cough syndrome[J]. Med J Chin PLA, 2014, 39(5): 354-357.[王德云. 上气道咳嗽综合征[J]. 解放军医学杂志,2014, 39(5): 354-357.]
[12] Cai C. Unmasking nonasthmatic eosinophilic bronchitis as an important cause of chronic cough[J]. Med J Chin PLA, 2014, 39(5): 365-368.[蔡闯. 非哮喘性嗜酸性粒细胞支气管炎:慢性咳嗽的重要病因[J]. 解放军医学杂志, 2014, 39(5): 365-368.]
[13] Hu H. Cough variant asthma: Progress in diagnosis and treatment[J]. Med J Chin PLA, 2014, 39(5): 361-364.[胡红. 咳嗽变异性哮喘的诊断及治疗进展[J]. 解放军医学杂志, 2014, 39(5): 361-364.]
[14] Haque RA, Usmani OS, Barnes PJ. Chronic idiopathic cough: a discrete clinical entity[J]? Chest, 2005, 127(5): 1710-1713.
[15] McGarvey LP, Heaney LG, Lawson JT, et al. Evaluation and outcome of patients with chronic non-productive cough using a comprehensive diagnostic protocol[J]. Thorax, 1998, 53(9): 738-743.
[16] Yu SY. The idiopathic chronic cough and cough hypersensitivity syndrome[J]. Med J Chin PLA, 2014, 39(5): 350-353.[俞森洋. 特发性慢性咳嗽与咳嗽高敏综合征[J]. 解放军医学杂志, 2014, 39(5): 350-353.]
[17] Morice AH. The cough hypersensitivity syndrome: a novel paradigm for understanding cough[J]. Lung, 2010, 188(1): 87-90.
[18] Chung KF. Chronic 'cough hypersensitivity syndrome': a more precise label for chronic cough[J]. Pulm Pharmacol Ther, 2011, 24(3): 267-271.[19] Birring SS. Controversies in the evaluation and management of chronic cough[J]. Am J Respir Crit Care Med, 2011, 183(6): 708-715.
[20] Birring SS. New concepts in the management of chronic cough[J]. Pulm Pharmacol Ther, 2011, 24(3): 334-338.
[21] Morice A, Faruqi S, Wright C, et al. Cough hypersensitivity syndrome: a distinct clinical entity[J]. Lung, 2011, 189(1): 73-79.
[22] Patberg KW. The female preponderance to cough hypersensitivity syndrome: another clue pointing to the role of TRPV1 in cough[J]. Lung,2011, 189(3): 257-258.
[23] Morice AH, Kastelik JA, Thompson R. Cough challenge in the assessment of cough reflex[J]. Br J Clin Pharmacol, 2001, 52(4): 365-375.
[24] Asthma Group of Respiratory Branch of Chinese Medical Association. Guideline for diagnosis and treatment for asthma(Draft)[J]. Chin J Tuberc Respir Dis, 2005, 28(11): 737-744.[中华医学会呼吸病学分会哮喘学组. 咳嗽的诊断与治疗指南(草案)[J]. 中华结核和呼吸杂志, 2005, 28(11): 737-744.]
[25] Morice AH, Fontana GA, Belvisi MG, et al. ERS guidelines on the assessment of cough[J]. Eur Respir J, 2007, 29(6): 1256-1276.
[26] Prudon B, Birring SS, Vara DD, et al. Cough and glottic-stop reflex sensitivity in health and disease[J]. Chest, 2005, 127(2): 550-557.
[27] Kamimura M, Mouri A, Takayama K, et al. Cough challenge tests involving mechanical stimulation of the cervical trachea in patients with cough as a leading symptom[J]. Respirology, 2010, 15(8): 1244-1251.
[28] Choudry NB, Fuller RW. Sensitivity of the cough reflex in patients with chronic cough[J]. Eur Respir J, 1992, 5(3): 296-300.
[29] Nieto L, de Diego A, Perpina M, et al. Cough reflex testing with inhaled capsaicin in the study of chronic cough[J]. Respir Med, 2003, 97(4):393-400.
[30] Ma QL, Long Z, Zhang Q, et al. The significance of cough reflex sensitivity test in chronic cough[J]. Chin J Intern Med, 2011, 50(8): 668-671.[马千里, 龙舟, 张巧,等. 慢性咳嗽患者咳嗽激发试验的意义[J]. 中华内科杂志, 2011, 50(8): 668-671.]
[31] Kastelik JA, Thompson RH, Aziz I, et al. Sex-related differences in cough reflex sensitivity in patients with chronic cough[J]. Am J Respir Crit Care Med, 2002, 166(7): 961-964.
[32] Kelsall A, Decalmer S, McGuinness K, et al. Sex differences and predictors of objective cough frequency in chronic cough[J]. Thorax, 2009,64(5): 393-398.
[33] Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction[J]. Neuron, 1989, 2(4): 1313-1323.
[34] Clapham DE. TRP channels as cellular sensors[J]. Nature, 2003, 426(6966): 517-524.
[35] Ramsey IS, Delling M, Clapham DE, et al. An introduction to TRP channels[J]. Annu Rev Physiol, 2006, 68: 619-647.
[36] Caterina M, Schumacher M, Tominaga M, et al. The capsaicin receptor: A heat-activated ion channel in the pain pathway[J]. Nature, 1997,389(6653): 816-824.
[37] Arniges M, Vazquez E, Fernandez-Fernandez JM, et al. Swelling-activated Ca2+entry via TRPV4 channel is defective in cystic fibrosis airway epithelia[J]. J Biol Chem, 2004, 279(52): 54062-54068.
[38] Nilius B. TRP channels in disease[J]. Biochim Biophys Acta, 2007, 1772(8): 805-812.
[39] Zhu G, Gulsvik A, Bakke P, et al. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease[J]. Hum Mol Genet,2009, 18(11): 2053-2062.
[40] Lalloo U, Fox A, Belvisi M, et al. Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs[J]. J Appl Physiol, 1995, 79(4): 1082-1087.
[41] Jordt S, Tominaga M, Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site[J]. Proc Nat Acad Sci USA,2000, 97(14): 8134-8139.
[42] Zygmunt P, Petersson J, Andersson D, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide[J]. Nature,1999, 400(6743): 452-457.
[43] Watanabe N, Horie S, Michael GJ, et al. Immunohistochemical localization of vanilloid receptor subtype 1 (TRPV1) in the guinea pig respiratory system[J]. Pulm Pharmacol Ther, 2005, 18(3): 187-197.
[44] Groneberg DA, Niimi A, Dinh QT, et al. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough[J].Am J Respir Crit Care Med, 2004, 170(12): 1276-1280.
[45] Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts[J]. J Biol Chem, 1999, 274(1): 7325-7333.
[46] Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures[J].Cell, 2003, 112(6): 819-829.
[47] Bautista DM, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion channel TRPA1[J]. Proc Natl Acad Sci, 2005,102(34): 12248-12252.
[48] Bautista D, Jordt S, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents[J]. Cell, 2006,124(6): 1269-1282.
[49] Andre E, Gatti R, Trevisani M, et al. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents[J]. Br J Pharmacol,2009, 158(6): 1621-1628.
[50] Birrell M, Belvisi M, Grace M, et al. TRPA1 agonists evoke coughing in guinea pig and human volunteers[J]. Am J Respir Crit Care Med, 2009,180(11): 1042-1047.
[51] Peier AM, Moqrich A, Hergarden AC, et al. A TRP channel that senses cold stimuli and menthol[J]. Cell, 2002, 108(5): 705-715.
[52] Millqvist E, Ternesten-Hasseus E, Bende M. Inhalation of menthol reduces capsaicin cough sensitivity and influences inspiratory flows in chronic cough[J]. Respir Med, 2013, 107(3): 433-438.
[53] Plevkova J, Kollarik M, Poliacek I, et al. The role of trigeminal nasal TRPM8 expressing afferent neurons in the antitussive effects of menthol[J]. J Appl Physiol, 2013, 115(2): 268-274.
[54] Birring SS, Murphy AC, Scullion JE, et al. Idiopathic chronic cough and organ-specific autoimmune diseases: a case-control study[J]. Respir Med, 2004, 98(3): 242-246.
[55] Birring SS, Brightling CE, Symon FA, et al. Idiopathic chronic cough: association with organ specific autoimmune disease and bronchoalveolar lymphocytosis[J]. Thorax, 2003, 58(12): 1066-1070.
[56] Mund E, Christensson B, Gronneberg R, et al. Noneosinophilic CD4 lymphocytic airway inflammation in menopausal women with chronic dry cough[J]. Chest, 2005, 127(5): 1714-1721.
[57] Boulet LP, Milot J, Boutet M, et al. Airway inflammation in nonasthmatic subjects with chronic cough[J]. Am J Respir Crit Care Med, 1994,149(2 Pt 1): 482-489.
[58] Choudry NB, Fuller RW, Pride NB. Sensitivity of the human cough reflex: effect of inflammatory mediators prostaglandin E2, bradykinin, and histamine[J]. Am Rev Respir Dis, 1989, 140(1): 137-141.
[59] Sikand P, Premkumar LS. Potentiation of glutamatergic synaptic transmission byprotein kinase C-mediated sensitization of TRPV1 at the first sensory synapse[J]. J Physiol, 2007, 581(Pt 2): 631-647.
[60] Kwong K, Lee LY. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones[J]. J Physiol, 2005, 564(Pt 2): 437-450.
[61] Grace M, Birrell MA, Dubuis E, et al. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin[J]. Thorax, 2012,67(10): 891-900.
[62] McLeod RL, Jia Y, McHugh NA, et al. Sulfur-dioxide exposure increases TRPV1-mediated responses in nodose ganglia cells and augments cough in guinea pigs[J]. Pulm Pharmacol Ther, 2007, 20(6): 750-757.
[63] Lindsey BG, Morris KF, Segers LS, et al. Respiratory neuronal assemblies[J]. Respir Physiol, 2000, 122(2-3): 183-196.
[64] Shannon R, Baekey DM, Morris KF, et al. Ventrolateral medullary respiratory network and a model of cough motor pattern generation[J]. J Appl Physiol, 1998, 84(6): 2020-2035.
[65] Mazzone SB, McLennan L, McGovern AE, et al. Representation of capsaicin-evoked urge-to-cough in the human brain using functional magnetic resonance imaging[J]. Am J Respir Crit Care Med, 2007, 176(4): 327-332.
[66] Chen CY, Bonham AC, Plopper CG, et al. Neuroplasticity in nucleus tractus solitarius neurons after episodic ozone exposure in infant primates[J]. J Appl Physiol, 2003, 94(2): 819-827.
[67] Joad JP, Sekizawa S, Chen CY, et al. Air pollutants and cough[J]. Pulm Pharmacol Ther, 2007, 20(4): 347-354.
[68] Joad JP, Munch PA, Bric JM, et al. Passive smoke effects on cough and airways in young guinea pigs: role of brainstem substance P[J]. Am J Respir Crit Care Med, 2004, 169(4): 499-504.
[69] Ryan NM, Birring SS, Gibson PG. Gabapentin for refractory chronic cough: a randomised, double-blind, placebo-controlled trial[J]. Lancet,2012, 380(9853):1583-1589.
[70] Jeyakumar A, Brickman TM, Haben M. Effectiveness of amitriptyline versus cough suppressants in the treatment of chronic cough resulting from postviral vagal neuropathy[J]. Laryngoscope, 2006, 116(12): 2108-2112.
[71] Dicpinigaitis PV, Rauf K. Treatment of chronic, refractory cough with baclofen[J]. Respiration, 1998, 65(1): 86-88.
[72] Xu X, Chen Q, Liang S, et al. Successful resolution of refractory chronic cough induced by gastroesophageal reflux with treatment of baclofen[J]. Cough, 2012, 8(1): 8.
[73] Morice AH, Menon MS, Mulrennan SA, et al. Opiate therapy in chronic cough[J]. Am J Respir Crit Care Med, 2007, 175(4): 312-315.
[74] Lim KG, Rank MA, Hahn PY, et al. Long-term safety of nebulized lidocaine for adults with difficult-to-control chronic cough: a case series[J].Chest, 2013, 143(4): 1060-1065.
[75] Barnes PJ. The problem of cough and development of novel antitussives[J]. Pulm Pharmacol Ther, 2007, 20(4): 416-422.
[76] Smith JA, Murdoch RD, Newlands A, et al. The impact of a selective oral TRPV1 antagonist in patients with chronic cough[J]. Thorax, 2012,67(Suppl 2): A128.
[77] Chamberlain S, Garrod R, Birring SS. Cough suppression therapy: Does it work[J]? Pulm Pharmacol Ther, 2013, 26(5): 524-527.
[78] Vertigan AE, Theodoros DG, Gibson PG, et al. Efficacy of speech pathology management for chronic cough: a randomised placebo controlled trial of treatment efficacy[J]. Thorax, 2006, 61(12): 1065-1069.
[79] Patel AS, Watkin G, Willig B, et al. Improvement in health status following cough-suppression physiotherapy for patients with chronic cough[J]. Chron Respir Dis, 2011, 8(4): 253-258.
[80] Ryan NM, Vertigan AE, Gibson PG. Chronic cough and laryngeal dysfunction improve with specific treatment of cough and paradoxical vocal fold movement[J]. Cough, 2009, 5: 4.
[81] Ryan NM, Vertigan AE, Bone S, et al. Cough reflex sensitivity improves with speech language pathology management of refractory chronic cough[J]. Cough, 2010, 6: 5.
Cough hypersensitivity syndrome: a new concept for chronic idiopathic cough
LAI Ke-fang, FANG Zhang-fu, YAO Hong-mei State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
Chronic cough is one of the most common conditions that patients seek medical consultation, and the causes of chronic cough can be determined in most patients according to diagnostic algorithm. Whereas, there is still the etiology of chronic cough in some patients remained unexplained despite detailed investigations, and it was referred to as 'chronic idiopathic cough' or'unexplained chronic cough' previously. Cough reflex hypersensitivity is an underlying feature of those patients, a new term 'cough hypersensitivity syndrome' has been put forward to define those patients with chronic cough recently. This article reviews the pathophysiological and neurophysiological mechanisms of cough hypersensitivity syndrome and progress in diagnosis and treatment.
cough hypersensitivity syndrome; cough reflex sensitivity; neurophysiological mechanisms; diagnosis; treatment
R441.5
A
0577-7402(2014)05-0343-07
10.11855/j.issn.0577-7402.2014.05.02
510120 广州 广州医科大学附属第一医院广州呼吸疾病研究所,呼吸疾病国家重点实验室(赖克方、方章福、姚红梅)
2014-01-04;
2014-03-02)
沈宁)