“两板斧”突破百分数应用题教学难点

2013-12-29 00:00:00周二利
小学教学参考(数学) 2013年11期

百分数的教学历来是难点,形成这个难点的原因,一是百分数的教学是建立在比和比例的教学基础上,而比和比例的教学内容对学生来说有一定难度,其思维方法的训练对于学生也有一定的挑战。因为此前学生熟悉的加减乘除运算针对的是常数计算,而在比和比例部分已经涉及一个量的变化与另一个量的关系。这个特点在比和比例的应用题中有所体现,而在百分数的应用题中尤其突出,这就使得百分数应用题成为小学数学的教学难点。那么,如何突破这一难点呢?

一、对于常见易错的基础题,指导学生学会抓关键词

百分比的应用题中涉及至少两个变量的关系。既然涉及的关系是变量间的比例,那么抓准涉及两个变量关系的联系词,对于题意的理解尤为重要,也是解决问题的钥匙所在。相当多的学生做错问题,就是在审题过程中没有注意关键词或没有抓住关键词,对于关键词视而不见,对于谁是比较的标准量、谁是被比较的量没有认真推敲,造成比例关系出错。

试看下列这组典型填空题:① 90kg是2吨的( )%;②比( )千米少20%是50千米;③( )小时比40小时多30%;④9.5吨增加( )%是1吨。

学生常见的错解:①2÷90×100%;②50÷20%;③40×30%;④1÷9.5×100%。

如果稍作概括,发现比例应用题的叙述中最典型的句式是:“……甲……比……乙……(多、少、长、短、重、轻……)(……)%”,教师在课堂教学中就应该训练学生掌握这个典型句式的含义,明确句式中的关键词“比”,点出紧跟“比”字的对象“乙”是被视为比较标准的事物,而“甲”则是被比较的对象,其对应的量被视为标准的对象为名义的“1”、“100%”,如果两者的比通过除法求得,那么视为标准的乙物体对应的量必须作为除数,被比较的对象甲对应的量则应作为被除数。这里,注意句式“……甲……比……乙……(多、少、长、短、重、轻……)(……)%”的若干变形说法,如:“……甲……是……乙……的( )%”, “……甲……(增加、减少)(……)%……是……乙……”。教师在新授课教学中应该通过生活中的实例逐一让学生通过学习掌握这些典型句型的含义,并明白其中的这些关键词在理解题意中的作用,培养学生抓关键词的习惯与意识。这也有力地促进学生由形象思维逐步适应向初级抽象思维的转变,这是符合小学高年级学生的心理年龄特征的。

二、对牵涉两个以上百分比关系的应用题,指导学生分清几类百分比关系

第一类,同一个量连续变化两次。在同一个量连续两次百分比变化的问题中,学生容易把连续变化的两次误认为是独立变化的,进而误以为第二次变化的基准量(即视为100%的那个量)就是第一次变化前的基准量,极易认为总的变化百分比值就是两次百分比的和。

典型例题:一种汽车先降价10%,后来经过市场调研后发现,销量可望再上一个台阶,又继续降价10%,加大促销力度,现在的价格只相当于原价的几折?错解:100%-10%-10%=80%。 剖析:此类问题学生常见错解的原因在于认为连续两次降价的百分比之和就是总的降价结果,而没有注意到经过第一个百分比变化后的量已经成为第二次百分比变化的新的基准量。这样,上述问题的解法就应当是:1×(100%-10%)×(100%-10%)=81%。

第二类,涉及同一个计算量的另外两个量自身发生百分比变化。与同一个量相关的另外两个量自身分别发生百分比的变化时,这种变化往往是独立的,相当多的学生把它们混为一谈,没有意识到涉及这两个量的百分比在代入计算时,应该直接参与发生变化的这两量的计算过程。当然,要注意区分“和”与 “积”这两类问题。

典型问题一(和类问题):商店出售两件工艺品,玩具笔和玩具小笔刨,其中,小笔刨售价8元,玩具笔售价4元,后来做了调整,笔刨涨价10%,笔降价10%,如果笔刨和笔是成对出售的,问:顾客购买时的单价如何变化?常见错解:因为笔刨涨价10%,笔降价10%,所以成对出售时总的价格变化的百分比为10%-10%=0;(8+4)×(100%+10%)×(100%-10%)。这两种解法错误的根源都在于没有意识到,虽然笔刨和笔是成对出售的,但是,笔刨和笔的单价变化确实是独立的,前述的两种解法将其混同于同一变量的前后两次变化。正确解答应为:8×10%=0.8,4×10%=0.4,所以涨价与降价百分比幅度虽然相等,但数量差值幅度不等,最终成对出售时,顾客购买时的单价变化为涨价0.4元。

典型问题二(积类问题):某超市本月出售的“南国”内衣数量比上月增加了10%,单价降低了10%,则本月营业额比上月变化百分之几?常见错解:营业额=数量×单价,所以,本月营业额比上月变化为10%×10%=1%;或1×(100%+10%)-1×(100%+10%)=0,相当于“数量与单价此消彼长”,实际营业额没有变化。其实这两种计算方法都是错的,这两个10%不能直接加减或乘除,应该作为数量与单价的值参与整体的运算,再求差值,所以,这个问题中求营业额的时候,既然出售的内衣数量与单价是乘积关系,因此实际营业额的变化百分比应该是做如下计算:1×(100%+10%)×1×(100%-10%)=99%,所以,营业额其实是下降了1%。

总结以上内容可以看出,数学教师舞好这“两板斧”:即对常见易错基础题指导学生学会抓关键词;对牵涉两个以上百分比关系的应用题指导学生分清几类百分比关系,让学生掌握好百分比应用题中的变量的逻辑关联,可以很好解决百分比类的应用题这一教学难点。

(责编 罗 艳)