微波辐射相转移催化合成扁桃酸工艺研究

2013-12-20 08:25:10杨德红杨本勇
中原工学院学报 2013年5期
关键词:扁桃摩尔甲醛

杨德红,杨本勇

(中原工学院,郑州450007)

扁桃酸,即1-羟基苯乙酸,是手性分子,存在两种光学异构体,分子内含有一个手性碳.扁桃酸是重要的医药中间体和染料中间体[1].用化学合成法制备手性扁桃酸的报道相对较少,较多的文献报道集中在扁桃酸外消旋产物的制备[2-3],主要是苯甲醛氰化法、苯乙酮衍生法、相转移催化法 (PTC法)等.PTC法是目前实验室常用的方法,与前面两种合成方法相比,具有产率高、反应条件温和、操作简单、后处理方便、催化剂可以循环使用等优点,具有工业化应用前景.但该方法也存在反应不易控制、副反应多、溶剂量大、反应时间长等不足.微波或超声波与相转移催化剂结合有助于克服单纯相转移催化法的缺点,尤其在缩短反应时间方面最明显,而微波或超声波辅助的相转移催化合成法合成扁桃酸鲜有报道[4-5].近年来,人们研究了几乎所有类型的微波辅助的有机化学反应[6],结果表明微波辐射合成技术具有反应速度快、选择性高、无滞后效应等优点,不仅能大大缩短反应时间,提高反应收率,减少溶剂用量甚至可进行无溶剂反应,同时还能简化后处理过程,减少“三废”,保护环境.

本文就微波辐射条件下苯甲醛和卤仿相转移催化合成扁桃酸的工艺进行研究,讨论了反应条件对扁桃酸产率的影响.

1 实 验

1.1 主要原料和试剂

苯甲醛、氯仿、氢氧化钠、三乙基苄基氯化铵(TEBA)、四丁基氯化铵(TBAC)、四甲基氯化铵、β-环糊精、乙酸乙酯、乙醇、甲苯、石油醚、无水硫酸纳、浓盐酸等.所有试剂均为化学纯或者分析纯.

1.2 主要仪器

MAS-Ⅱ微波化学反应仪;Vector22红外吸收光谱仪;WRS-1A数字熔点仪;ZF-1三用紫外分析仪.

1.3 扁桃酸合成步骤

向三口烧瓶中加入0.049 0mol苯甲醛、0.086 3mol氯仿、0.001 5mol催化剂,将三口瓶置于特定功率的微波辐射下,待体系升温至设定温度,滴加50%氢氧化钠溶液12.5mL,并搅拌一段时间.将三口瓶从微波反应仪中取出,向反应混合物中加入适量的水,使固体完全溶解,并将其倒入分液漏斗中除去下层有机相.上层水相用20mL乙酸乙酯分2次洗涤,再用浓盐酸酸化至pH值约为1~2.最后用30mL乙酸乙酯分2次提取,合并酯层,减压蒸馏,得到浅黄色固体,用1∶10的乙醇和甲苯溶液重结晶,烘干,得到白色粉末状固体,称重,并对产品进行熔点测试和红外IR表征.

2 结果与讨论

2.1 不同催化剂对扁桃酸产率的影响

首先做空白实验,即不添加任何催化剂,设定反应条件:微波功率300W,反应时间20min,反应温度60℃,扁桃酸的产率只有3.5%左右.相同的反应条件下,分别使用三乙基苄基氯化铵(TEBA)、四丁基氯化铵(TBAC)、四甲基氯化铵和β-环糊精作为催化剂,添加苯甲醛、氯仿和催化剂的摩尔比为1∶1.76∶0.03,通过苯甲醛和氯仿在微波辅助下反应,得到不同催化剂下扁桃酸的产率,如表1所示.使用TBAC作为催化剂,扁桃酸的产率最高,达到60.4%,β-环糊精的催化效果最差,和空白实验结果接近.所以,在以下的实验中选取TBAC为催化剂.

表1 不同催化剂对扁桃酸产率的影响

2.2 催化剂用量对扁桃酸产率的影响

催化剂选用TBAC,催化剂和苯甲醛的摩尔比分别为0.01、0.03和0.05,其他条件不变(微波功率300W,反应时间20min,反应温度60℃),扁桃酸的产率如表2所示.当催化剂用量增加时,产物的产率最初是增加的;当催化剂用量继续增加,扁桃酸的产率反而下降.这可能是由于催化剂用量过多,增加了反应后处理的难度,产物损失较多的缘故.所以,在该反应中,催化剂用量以TBAC与苯甲醛的摩尔比为0.03时效果最佳.

表2 催化剂用量对扁桃酸产率的影响

2.3 反应物摩尔配比对扁桃酸产率的影响

表3所示是氯仿和苯甲醛的摩尔比分别为1.25、1.76和2.24、其他条件不变(微波功率300W,反应时间20min,反应温度60℃)时获得的扁桃酸的产率.实验结果表明:随着氯仿量的增加,扁桃酸的产率先增高后显著降低.这可能是因为氯仿的量增大后,在碱性条件下副反应增多,或者有利于副反应的进行,使扁桃酸在后处理中损失增大.此外,控制氯仿的用量,可节约成本,也有利于减少环境污染.所以,氯仿和苯甲醛的摩尔比以1.76较为适宜.

表3 氯仿和苯甲醛的摩尔比对扁桃酸产率的影响

2.4 微波功率对反应的影响

微波功率直接影响反应体系的温度,进而影响到扁桃酸的产率.在苯甲醛、氯仿和催化剂的摩尔比为1∶1.76∶0.03,反应时间为20min,反应温度为60℃的条件下,不同的微波功率对扁桃酸产率的影响如表4所示.随着微波辐射功率的增加,扁桃酸的产率逐渐提高,但当微波辐射功率从300W增加到400W时,产物的产率降低.这可能是因为微波辐射功率太高,易导致局部过热,从而加剧氧化等副反应,也使氯仿容易挥发而损失.因此,微波辐射功率以300W为宜.

表4 微波功率对扁桃酸产率的影响

2.5 系统反应温度对扁桃酸产率的影响

在微波功率一定的情况下,改变反应体系或者系统的预设反应温度,同样会影响到扁桃酸的产率.在苯甲醛、氯仿和催化剂的摩尔比为1∶1.76∶0.03,微波功率为300W,反应时间为20min,以反应温度为单一变量的情况下,实验结果如表5所示.系统反应温度即微波预设温度为60℃时,产率最高,而且反应温度升高或降低10℃都会明显降低产率.因此,反应最适合温度为60℃.

表5 反应温度对扁桃酸产率的影响

2.6 微波辐射时间对扁桃酸产率的影响

在苯甲醛、氯仿和催化剂的摩尔比为1∶1.76∶0.03,微波功率为300W,反应温度为60℃的条件下,微波辐射时间对产物产率有较大的影响,如表6所示.时间太短,反应不充分;时间太长,反应混合物容易碳化变黑.在相同的反应条件下,微波辐射10~25min,用薄层分析,即用TLC跟踪苯甲醛是否消耗完毕来判断反应是否还需要延长时间.结果表明,当反应进行到20min时苯甲醛消失,说明原料苯甲醛已经转化完全.所以,反应最佳时间应控制在20min左右,反应时间过长或过短都不利于扁桃酸的合成.

表6 微波辐射反应时间对扁桃酸产率的影响

2.7 实验重现性研究

图1 扁桃酸的红外光谱图

通过以上实验,可以得出微波相转移催化合成扁桃酸的最佳合成反应条件:微波辐射功率为300W,系统反应温度为60℃,反应时间20min,苯甲醛、氯仿和TBAC的摩尔比为1∶1.76∶0.03.在此条件下,扁桃酸的产率最高,可达60.4%.在最佳反应条件下对该反应进行了4次重现性实验,证明实验的重现性尚可,结果如表7所示.

表7 重现性实验结果

2.8 产物表征

经测试,产物的熔点为120~121℃,和文献[7]获得的熔点值118~120℃非常接近.红外光谱图显示产物为扁桃酸,如图1所示.数据(cm-1)如下:3 400(醇羟基的伸缩振动),3 000~2 630(羧基中羟基伸缩振动),2 965(侧链上C-H伸缩振动),1 714(羰基伸缩振动),1 298(C-O伸缩振动),1 063(羟基的面外弯曲振动),731和695处强吸收为苯环单取代时特征峰.

3 结 语

通过微波辐射相转移催化合成扁桃酸,将微波辐射的反应速度快、合成效率高等优点和相转移催化法(PTC法)所具有的反应条件温和、操作简单、后处理方便、催化剂可以循环使用等优点结合在一起,克服了相转移催化法(PTC法)反应不易控制、反应时间长等缺点.确定了微波辐射相转移催化合成扁桃酸的最佳工艺条件:微波辐射功率为300W,系统反应温度为60℃,反应时间为20min,苯甲醛、氯仿和TBAC的摩尔比为1∶1.76∶0.03.在此条件下,扁桃酸的产率可达60.4%.

[1]邵恒,甘永平,张文魁,等.扁桃酸的拆分和手性扁桃酸的合成研究进展[J].化学试剂,2007,29(3):143-146.

[2]陈红飙,林原斌,刘展鹏.D/L扁桃酸的合成研究[J].合成化学,2002,10(2):186-188.

[3]彭彩云,李云耀.扁桃酸合成中的相转移催化剂[J].中南药学,2005,3(3):168-170.

[4]刘志雄.超声波与相转移催化合成扁桃酸[J].精细化工中间体,2007,37(6):33-35.

[5]刘瑾,李延.微波辐射相转移催化合成扁桃酸[J].农药,2008,47(7):502-504.

[6]王静,姜凤超.微波有机合成反应的新进展[J].有机化学,200,22(3):212-219.

[7]吴珊珊,魏运洋,周凤儿,等.相转移催化法合成扁桃酸[J].江苏化工,2004,32(1):31-33.

猜你喜欢
扁桃摩尔甲醛
微生物降解甲醛的研究概述
生物学通报(2021年4期)2021-03-16 05:41:26
战场上的雕塑家——亨利摩尔
河北画报(2020年10期)2020-11-26 07:20:56
如何确定“甲醛”临界量
西方摩尔研究概观
扁桃斑鸠菊挥发性成分和无机元素分布
中成药(2018年6期)2018-07-11 03:01:20
大漠瀚海中的珍稀濒危野生植物之蒙古扁桃
甘肃林业(2016年3期)2016-11-07 08:56:28
脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
对氟苯甲醛的合成研究
美国延迟甲醛排放施行标准截止日期
西班牙的4个扁桃新品种介绍
山西果树(2009年2期)2009-04-21 03:59:20