二氧化氯对煤储层孔隙结构的影响

2013-10-22 02:11郭红玉王惠风苏现波夏大平张双斌马俊强
天然气工业 2013年11期
关键词:孔容二氧化氯压裂液

郭红玉 王惠风 苏现波 夏大平 张双斌 马俊强

1.瓦斯地质与瓦斯治理国家重点实验室培育基地(河南理工大学) 2.河南理工大学能源科学与工程学院3.中国神华神东煤炭集团保德煤矿

水力压裂是我国煤层气开发的主要增透措施,但由于煤层温度低至20℃左右,高黏压裂液破胶困难,造成了低携砂能力的活性水“独霸”煤层气行业的不利局面[1-3]。随着煤层气开发向深部延伸,地应力逐渐增加,支撑剂破碎和嵌入越发严重,亟待提高压裂液黏度增加施工砂比,进而提高裂缝导流能力[4-5]。

近年来强氧化剂——二氧化氯(ClO2)在国内外油气田上广泛应用于近井地带的解堵,取得显著效果[6-8]。郭红玉等发现二氧化氯可以作为煤储层压裂液的低温破胶剂,同时还能显著降低煤的亲甲烷能力,提高含气饱和度与临界解吸压力,但强氧化剂二氧化氯对煤的孔隙结构的影响还鲜有研究[9]。探讨二氧化氯对煤储层孔隙结构的影响情况对其在煤层气行业中的推广应用具有重要意义。

煤储层具有双孔隙结构,即基质孔隙和裂隙,其大小、形态、孔隙度和连通性等决定了其吸附特性和瓦斯运移产出难易[10-13]。煤层气开发归结于甲烷的解吸、扩散和渗流3个过程的有机结合,孔隙结构决定了煤的亲甲烷能力及其渗透性,从而影响煤层气的解吸和运 移[14-17]。 压 汞 法 常 用 来 评 价 煤 储 层 的 孔 隙 结构[18-19],笔者定量测定二氧化氯对煤储层孔隙度、孔径分布、孔容、比表面积等参数的影响,揭示其对煤储层的化学增透效果。

1 样品与实验方法

1.1 实验材料

1.1.1 煤样采集

分别在河南省义马市千秋矿井、焦作市中马村矿井和山西省柳林县沙曲矿井采集新鲜煤样,进行工业分析与反射率测试(表1)。

表1 煤样基础数据表

1.1.2 二氧化氯溶液

按照比例称取A试剂和B试剂,加入已取好蒸馏水的小口锥形瓶中,充分搅拌溶解;按比例加入C添加剂,搅拌直至溶液呈浅黄色,即二氧化氯溶液。

1.2 实验方法与样品制备

测试仪器为美国麦克尔仪器公司生产的Auto poreⅣ9505全自动压汞仪,工作压力范围为0.000 689~413.79MPa,孔径测量范围为5~360 000nm,汞能进入的最小半径为3nm。计算机控点式测量,高压段选取压力点36个,每点稳定时间2s,样品测试质量3g左右。

把煤样粉碎,筛选粒径为2mm左右,采用浓度为4 000μg/g的ClO2溶液浸泡72h,之后使用蒸馏水清洗,烘干备用。煤样处理前后的编号分别为:千秋矿煤样Q1、Q2,沙曲矿煤样S1、S2,中马村矿煤样Z1、Z2。

2 实验结果与分析

2.1 压汞实验结果

为避免水分对测试结果的影响,在实验前首先对煤样进行干燥处理。对ClO2溶液处理前后的3种不同煤阶煤样分别做压汞实验,煤样进—退汞曲线见图1。

2.2 压汞曲线变化特征

1)煤样经ClO2处理后进—退汞曲线开口变小,说明了煤样的退汞效率提高,孔隙连通性增强,3种不同煤阶处理煤样的退汞效率比原煤样均有所增加。在相同压力下,3种不同煤阶处理煤样的进汞量均有增加,表明煤样的孔隙度增加。

2)从长焰煤、焦煤到无烟煤对比,进—退汞曲线的开口变化幅度下降,且最高进汞量增加幅度也逐渐下降,表明了煤变质程度越高,越不利于二氧化氯对煤储层的氧化刻蚀增透。

2.3 孔隙结构变化特征

因测试中煤颗粒堆积得到的超大孔(大于等于100 000nm),并非煤样本身孔—裂隙,因此去除超大孔隙的孔容。其余采用本文参考文献[20]的孔隙分类方案,即微孔(3~10nm)、小孔(10~100nm)、中孔(100~1 000nm)和大孔(1 000~100 000nm),依据压汞曲线得出孔隙分布参数见表2~4。其中,孔隙度、总孔容和比表面积的变化对比见图2。

煤样经二氧化氯处理前后对比分析,由图2可知:

1)煤样经ClO2溶液作用后,孔隙度及总孔容均有不同程度的增大,比表面积均有不同程度的减小。

图1 煤样进—退汞曲线图

表2 压汞实验基本参数表

2)千秋矿长焰煤、沙曲矿焦煤和中马矿无烟煤样的孔隙度增加幅度分别为2.08%、0.19%和0.12%,总孔容分别增大了0.017 1mL/g、0.002 0mL/g和0.000 3mL/g,比表面积分别减小了 1.054m2/g、0.706m2/g和0.622m2/g。表明在相同条件下,低阶煤更易被二氧化氯氧化,随着变质程度加深,效果变差,主要原因是高阶煤比低阶煤的大分子结构更稳定,抵抗二氧化氯氧化破坏能力较强。

3)表3数据表明,大孔和中孔的孔容比均有增大,表明了处理后煤的孔裂隙得到了扩容,连通性增强,改善了储层渗透性;表4数据表明小孔和微孔的比表面积比均有减小,表明煤对瓦斯的吸附容积减小,从而降低了煤对甲烷的吸附能力。

表3 煤样处理前后孔容对比表

表4 煤样处理前后比表面积对比表

3 结论

1)二氧化氯处理后煤样进—退汞曲线开口变小,且进汞量增加,表明了煤样孔隙度增加。大孔、中孔所占的孔容比增加,表明煤的孔隙度增加且有效连通性增强,二氧化氯对煤具有氧化刻蚀增透效果。二氧化氯处理后煤的比表面积减小,即小孔和微孔所占的比表面积比降低,揭示了煤对甲烷的吸附能力下降的内在机理。

2)二氧化氯不但可以实现煤储层低温条件下高黏压裂液的快速破胶和返排,降低储层污染,还可以降低煤的亲甲烷能力,对提高含气饱和度与临储比及采收率均有重要现实意义,同时还可以对煤储层进行氧化刻蚀增透,一定程度上增大了煤储层的渗透率,本研究为其在煤层气行业推广应用提供了实验支撑。

图2 孔隙度、孔容及比表面积变化图

[1]FLORES R M.Coalbed methane:From hazard to resource[J].International Journal of Coal Geology,1998,35(1/4):3-26.

[2]陈涛,林鑫,方绪祥,等.煤层气井压裂伤害机理及低伤害压裂液研究[J].重庆科技学院学报,2011,13(2):21-23.CHEN Tao,LIN Xin,FANG Xuxiang,et al.Fracturing damage mechanism and fracturing fluid with low damage of coalbed methane wells[J].Journal of Chongqing University of Science and Technology,2011,13(2):21-23.

[3]戴彩丽,赵辉,梁利,等.煤层气井用锆冻胶压裂液低温破胶体系[J].天然气工业,2010,30(6):60-63.DAI Caili,ZHAO Hui,LIANG Li,et al.A low temperature breaking system for zirconium gel fracturing fluids in coalbed methane gas wells[J].Natural Gas Industry,2010,30(6):60-63.

[4]秦勇,袁亮,胡千庭,等.我国煤层气勘探与开发技术现状及发展方向[J].煤炭科学技术,2012,40(10):1-6.QIN Yong,YUAN Liang,HU Qianting,et al.Status and development orientation of coalbed methane exploration and development technology in China[J].Coal Science and Technology,2012,40(10):1-6.

[5]张聪,李梦溪,王立龙,等.沁水盆地南部樊庄区块煤层气井增产措施与实践[J].天然气工业,2011,31(11):26-29.ZHANG Cong,LI Mengxi,WANG Lilong,et al.EOR measures for CBM gas wells and their practices in the Fanzhuang Block,southern Qinshui Basin[J].Natural Gas Industry,2011,31(11):26-29.

[6]姜学明,刘明立,张学昌,等.二氧化氯与酸液协同解堵工艺与应用效果[J].石油勘探与开发,2002,29(6):103-104.JIANG Xueming,LIU Mingli,ZHANG Xuechang,et al.The technique of plug removal by combination of chlorine dioxide and acid solution and its application results[J].Petroleum Exploration and Development,2002,29(6):103-104.

[7]李洁,赵立强,刘平礼,等.二氧化氯在油水井解堵增注中的应用[J].天然气勘探与开发,2009,32(1):67-70.LI Jie,ZHAO Liqiang,LIU Pingli,et al.Application of ClO2to plugging removal and stimulation in oil and water wells[J].Natural Gas Exploration & Development,2009,32(1):67-70.

[8]CAVALLARO A,CURCI E,GALLIANO G,et al.Design of an acid stimulation system with chlorine dioxide for the treatment of water-injection wells[C]∥paper 69533 presented at the Latin American and Caribbean Petroleum Engineering Conference,25-28March 2001,Buenos Aires,Argentina.New York:SPE,2001.

[9]郭红玉,夏大平,王惠风,等.二氧化氯作用下的煤吸附性变化及其大分子结构响应[J].高校地质学报,2012,18(3):568-572.GUO Hongyu,XIA Daping,WANG Huifeng,et al.Variations in adsorption and macro-molecular responses of coals treated with chlorine dioxide solution[J].Geological Journal of China Universities,2012,18(3):568-572.

[10]傅雪海,邢雪,刘爱华,等.华北地区各类煤储层孔隙、吸附特征及试井成果分析[J].天然气工业,2011,31(12):72-75.FU Xuehai,XING Xue,LIU Aihua,et al.Analysis of porosity,adsorption characteristics and well test results of coal beds with different ranks in North China[J].Natural Gas Industry,2011,31(12):72-75.

[11]秦勇.国外煤层气成因与储层物性研究进展与分析[J].地学前缘,2005,12(3):289-298.QIN Yong.Advances in overseas geological research on coalbed gas:Origin and reservoir characteristics of coalbed gas[J].Earth Science Frontiers,2005,12(3):289-298.

[12]徐凤银,云箭,孟复印.低碳经济促进天然气与煤层气产业快速发展[J].中国石油勘探,2011,16(2):6-11.XU Fengyin,YUN Jian,MENG Fuyin.Low carbon economy booms natural gas and CBM industry[J].China Petroleum Exploration,2011,16(2):6-11.

[13]曾雯婷,陈树宏,徐凤银.韩城区块煤层气排采控制因素及改进措施[J].中国石油勘探,2012,17(2):79-84.ZENG Wenting,CHEN Shuhong,XU Fengyin.Controlling factor analysis and suggestions on CBM drainage in Hancheng Block[J].China Petroleum Exploration,2012,17(2):79-84.

[14]张东民,韦波,蔡忠勇.煤层气解吸特征的实验研究[J].地质学报,2008,82(10):1432-1436.ZHANG Dongmin,WEI Bo,CAI Zhongyong.Experiment study of coalbed methane desorption[J].Acta Geologica Sinica,2008,82(10):1432-1436.

[15]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.HE Xueqiu,NIE Baisheng.Diffusion mechanism of porous gases in coal seams[J].Journal of China University of Mining & Technology,2001,30(1):1-4.

[16]梁宏斌,林玉祥,钱铮,等.沁水盆地南部煤系地层吸附气与游离气共生成藏研究[J].中国石油勘探,2011,16(2):72-78.LIANG Hongbin,LIN Yuxiang,QIAN Zheng,et al.Study on coexistence of absorbed gas and free gas in coal strata south of Qinshui Basin[J].China Petroleum Exploration,2011,16(2):72-78.

[17]左银卿,孟庆春,任严,等.沁水盆地南部高煤阶煤层气富集高产控制因素[J].天然气工业,2011,31(11):11-13.ZUO Yinqing,MENG Qingchun,REN Yan,et al.Controlling factors of enrichment and high deliverability of CBM gas from high-rank coal beds in the southern Qinshui Basin[J].Natural Gas Industry,2011,31(11):11-13.

[18]赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):439-442.ZHAO Aihong,LIAO Yi,TANG Xiuyi.Quantitative analysis of pore structure by fractal analysis[J].Journal of China Coal Society,1998,23(4):439-442.

[19]唐书恒,蔡超,朱宝存,等.煤变质程度对煤储层物性的控制作用[J].天然气工业,2008,28(12):30-33.TANG Shuheng,CAI Chao,ZHU Baocun,et al.Control effect of coal metamorphic degree on physical properties of coal reservoirs[J].Natural Gas Industry,2008,28(12):30-33.

[20]WHITICAR M J.A geochemical perspective of natural gas and atmospheric methane[J].Organic Geochemistry,1990,16(1/3):531-547.

猜你喜欢
孔容二氧化氯压裂液
一种微球状流化床催化剂及其制备方法和应用
耐高温交联酸压裂液的研制及其性能评价
探讨拟薄水铝石生产中工艺参数变化对质量的影响
使用二氧化氯贴片能预防新型冠状病毒?
二氧化氯在水产养殖中的应用——食场篇
大庆油田不返排压裂液技术研究及应用
饱和蒸气压对矿物孔隙结构影响的研究
可在线施工的反相微乳液聚合物压裂液
带旋转孔容腔瞬态演化与建模方法研究
稳定性二氧化氯对水华微囊藻叶绿素a及酶活性的影响