植茶年限对土壤团聚体氮、磷、钾含量变化的影响

2013-10-16 11:21王晟强郑子成李廷轩
植物营养与肥料学报 2013年6期
关键词:年限茶园养分

王晟强, 郑子成, 李廷轩

(四川农业大学资源环境学院,四川成都 611130)

植茶年限对土壤团聚体氮、磷、钾含量变化的影响

王晟强, 郑子成, 李廷轩*

(四川农业大学资源环境学院,四川成都 611130)

植茶年限; 土壤团聚体; 氮; 磷; 钾

Abstract: Through field investigation and laboratory analysis, effects of ages of tea plantations on changes of nitrogen, phosphorus and potassium contents in soil aggregates were studied. Results show that the contents of soil available K are increased first and then decreased with the increase of particle sizes of soil aggregates, and higher values which are from 38.52 to 70.32 mg/kg are found in 0.5-0.25 mm particle size. The distributions of total P and total K and available N are relatively even in soil aggregates of all particle sizes, and their coefficients of variation are 2.77%-11.58%, 0.82%-3.72% and 5.98%-10.62% separately. However, the contents of total N and available P are increased with decrease of particle sizes of the soil aggregates, and higher values(0.40-0.98 g/kg and 8.53-29.32 mg/kg) are found in <0.25 mm particle size. Along with rising ages of the tea plantations the contents of total N and total P and available N and P present increasing trends in soil aggregates of all particle sizes. However, the contents of available K display decreasing trends, and the contents of total K show no significant changes. The contribution rates of nitrogen, phosphorus and potassium contents in soil aggregates(>5 mm) are 45%-72%. Along with rising ages of the tea plantations, the contribution rates of >5 mm aggregates nutrient contents present increasing first and then decreasing trends, and higher values are found in tea plantations with ages of 23 and 31 years(60%-72%). The nitrogen, phosphorus and potassium retaining capacities and supplying capacities are significantly different in soil aggregates with different particle sizes. Long-term cultivation of tea is beneficial to soil aggregates total N and P and available N and P accumulations. However, the contents of available K are decreased year by year, and the contribution rates of >5 mm aggregates nutrient contents are found to be higher in tea plantations with ages of 23 and 31 years, and declined somewhat afterwards. Therefore, in management of tea gardens, it is essential to adopt balanced application of nitrogen and potassium fertilizers, and in tea plantations which are older than 23 years, to use organic manure in addition, so as to promote the increase of soil aggregates content and improve the capacity of tea garden soil fertilizer conservation and fertilizer supply.

Keywords: tea plantation age; soil aggregates; nitrogen; phosphorus; potassium

茶树(Camelliasinensis) 属山茶科山茶属,为多年生常绿木本植物,是我国重要的经济作物之一。统计表明,2012年我国茶园面积达238×104hm2,且有逐年扩大的趋势。在茶园土壤生态系统中,由于茶园的施肥管理、 茶树凋落物归还土壤以及根系分泌物等原因,随着植茶年限的增加,茶园土壤钙、 镁等盐基离子和微量元素含量有所降低[10-11],而铝、 氟和多酚类物质则逐渐积累[12-13]。但就目前而言,在长期植茶过程中,土壤团聚体氮、 磷、 钾含量变化情况如何,仍不清楚。因此,本文以植茶土壤为研究对象,探讨植茶年限对土壤团聚体氮、 磷、 钾含量变化的影响,旨在了解在植茶过程中土壤肥力的演变规律,以期为制订科学合理的茶园土壤管理措施提供理论依据。

1 材料与方法

1.1 研究区概况

老川茶园施肥情况为: 1)基肥施猪圈肥15000 kg/hm2,K2SO4型复合肥(质量比N ∶P2O5∶K2O=20 ∶8 ∶8)750 kg/hm2,在10月中旬,沿树冠边缘垂直下方开沟,依次施入复合肥、 猪圈肥,最后覆土。 2)追肥为一年追肥3次,春茶追肥时间为2月中旬,施复合肥1500 kg/hm2,尿素600 kg/hm2;夏茶追肥时间为5月下旬,施复合肥750 kg/hm2,尿素300 kg/hm2;秋茶追肥时间为7月下旬,施复合肥750 kg/hm2,尿素300 kg/hm2。追肥位置与基肥相同。

1.2 土样采集与处理

表1 供试土壤基本理化性质

表2 供试土壤团聚体组成

1.3 测定项目及方法

土壤pH、 有机质、 全氮、 碱解氮、 全磷、 有效磷、 全钾、 速效钾含量和颗粒组成(国际制)均采用常规方法测定[15]。

1.4 数据处理

各粒径团聚体对土壤养分含量的贡献率可通过下列公式[16]进行计算:

团聚体对土壤养分含量的贡献率= 该团聚体中养分含量×该团聚体含量/土壤中养分含量×100%。

试验数据采用DPS(11.0) 和EXCEL(2007) 软件进行统计分析。

2 结果与讨论

2.1植茶年限对土壤团聚体氮含量变化的影响

表3 植茶年限对土壤团聚体全氮含量变化的影响

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level;同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

表4 植茶年限对土壤团聚体碱解氮含量变化的影响

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level;同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

2.2 植茶年限对土壤团聚体磷含量变化的影响

表5 植茶年限对土壤团聚体全磷含量变化的影响

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level;同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

表6 植茶年限对土壤团聚体有效磷含量变化的影响

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level; 同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

2.3 植茶年限对土壤团聚体钾含量变化的影响

表7 植茶年限对土壤团聚体全钾含量变化的影响

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level; 同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

2.4 各粒径团聚体对土壤养分含量的贡献率

表8 植茶年限对土壤团聚体速效钾含量变化的影响

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level; 同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

表9 各粒径团聚体对土壤养分含量的贡献率

注(Note): 同行数据后不同小写字母表示不同粒径团聚体间差异达5%显著水平 Values followed by different small letters in same row mean significant differences between soil aggregates at the 5% level; 同列数据后不同大写字母表示不同年限团聚体间差异达5%显著水平 Values followed by different capital letters in a column are significant differences between in aggregates of different tea plantations ages at the 5% level.

3 结论

土壤团聚体速效钾含量随粒径的减小先升高后降低,全磷、 全钾和碱解氮含量在各粒径中分布较均匀,而全氮和有效磷含量则随粒径的减小而升高。表明不同粒径团聚体对土壤氮、 磷、 钾的保持和供应能力存在明显差异。

随着植茶年限的增加,各粒径团聚体全氮、 碱解氮、 全磷和有效磷含量逐渐升高,而速效钾含量则有所降低,全钾含量变化不明显。表明长期植茶有利于土壤团聚体全氮、 碱解氮、 全磷和有效磷的积累,但速效钾含量却逐年降低。故在茶园土壤的管理中,需平衡施用氮、 钾肥,从而减少土壤速效钾的淋失。

[1] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后土壤团粒结构的分形特征[J]. 植物生态学报, 2007, 31(1): 56-65. Gong W, Hu T X, Wang J Yetal. Study on fractal features of soil aggregate structure under natural evergreen broadleaved forest and artificial regeneration in southern Sichuan Province[J]. J. Plant Ecol., 2007, 31(1): 56-65.

[2] 白占国, 万国江. 贵州碳酸盐岩区域的侵蚀速率及环境效应研究[J]. 水土保持学报, 1998, 4(1): 1-7. Bai Z G, Wan G J. Study on watershed erosion rate and its environmental effects in Guizhou karst region[J]. J. Soil Water Conserv., 1998, 4(1): 1-7.

[3] 骆东奇, 白洁, 谢德体. 论土肥力评价指标和方法[J]. 土壤与环境, 2002, 11(2): 202-205. Luo D Q, Bai J, Xie D T. Research on evaluation norm and method of soil fertility[J]. Soil Environ. Sci., 2002, 11(2): 202-205.

[4] 郑子成, 何淑勤, 王永东, 等. 不同土地利用方式下土壤团聚体中养分的分布特征[J]. 水土保持学报, 2010, 24(3): 170-174. Zheng Z C, He S Q, Wang Y Detal. Distribution feature of soil nutrients in aggregate under different land use[J]. J. Soil Water Conserv., 2010, 24(3): 170-174.

[5] 石箭华, 孟广涛, 李品荣, 等. 滇中不同植物群落土壤团聚体组成及养分特征[J]. 水土保持学报, 2011, 25(4): 183-187. Shi J H, Meng G T, Li P Retal. Characteristics and distribution of nutrients in soil aggregates under different plant communities in central Yunnan[J]. J. Soil Water Conserv., 2011, 25(4): 183-187.

[6] 孙天聪, 李世清, 邵明安. 长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J]. 中国农业科学, 2005, 38(9): 1841-1848. Sun T C, Li S Q, Shao M Aetal. Effects of long-term fertilization on distribution of organic matters and nitrogen in cinnamon soil aggregates[J]. Sci. Agric. Sin., 2005, 38(9): 1841-1848.

[7] 王岩, 杨振明, 沈其荣. 土壤不同粒级中C、 N、 P、 K的分配及N的有效性研究[J]. 土壤学报, 2000, 37(1): 85-94. Wang Y, Yang Z M, Shen Q R. Distribution of C, N, P and K in different particle size fractions of soil and availability of N in each fraction[J]. Acta Pedol. Sin., 2000, 37(1): 85-94.

[8] Hinds A A, Lowe L E. Distribution of carbon, nitrogen, phosphorus and sulphur in particle-size separates from Gleysolic soils[J]. Can. J. Soil. Sci., 1980, 60: 783-786.

[9] 杨振明, 闫飞, 韩丽梅, 等. 我国主要土壤不同粒级的矿物组成及供钾特点[J]. 土壤通报, 1999, 30(4): 163-167. Yang Z M, Yan F, Han L Metal. Mineral composition and K supply in particle-size fractions of typical soils in China[J]. Chin. J. Soil Sci., 1999, 30(4): 163-167.

[10] 韩文炎, 阮建云, 林智, 等. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-74. Han W Y, Ruan J Y, Lin Zetal. The major nutritional limiting factors in tea soil and development of tea speciality fertilizer series[J]. J. Tea Sci., 2002, 22(1): 70-74.

[11] 郭雅玲, 王果, 罗丹, 等. 福建铁观音茶园土壤中铅、 镉、 砷、 铬、 汞、 铜、 氟的环境质量现状分析[J]. 中国生态农业学报, 2011, 19(3): 676-681. Guo Y L, Wang G, Luo Detal. Evaluation on the environmental quality about lead, cadmium, arsenic, chromium, mercury, copper and fluorine in the soils of Tieguanyin tea plantation in Fujian Province[J]. Chin. J. Eco-Agric., 2011, 19(3): 676-681.

[12] 丁瑞兴, 黄晓. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[J]. 土壤学报, 1991, 28(3): 229-236. Ding R X, Huang X. Biogeochemical cycle of aluminium and fluorine in tea garden soil system and its relationship to soil acidification[J]. Acta Pedol. Sin., 1991, 28(3): 229-236.

[13] 俞慎, 何振立, 陈国潮, 黄昌勇. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439. Yu S, He Z L, Chen G C, Huang C Y. Soil chemical characteristics and their impacts on soil microflora in the root layer of tea plants with different cultivating ages[J]. Acta Pedol. Sin., 2003, 40(3): 433-439.

[14] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. Institute of Soil Science, Chinese Academy of Sciences. The soil physical and chemical analysis manual[M]. Shanghai: Shanghai Science and Technology Press, 1978.

[15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K. Analytical methods for soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

[16] 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2009, 26(2): 364-372. Qiu L P, Zhang X C, Zhang J A. Distribution of nutrients and enzymes in loess plateau soil aggregates after long-term fertilization[J]. Acta Ecol. Sin., 2009, 26(2): 364-372.

[17] Arrouays D, Vion I, Kiein J L. Spatial analysis and modeling of topsoil carbon storage in temperate forest humic loamy soils of France[J]. Soil. Sci., 1995, 159: 191-198.

[18] 刘敏英. 植茶年限对土壤团聚体组成及其有机碳组分影响[D]. 成都: 四川农业大学硕士学位论文, 2012. Liu M Y. Effect of planting-year of tea on composition of soil aggregate and fractions of organic carbon[D]. Chengdu: Ms thesis, Sichuan Agricultural University, 2012.

[19] 徐阳春, 沈其荣. 长期施用不同有机肥对土壤各粒级复合体中C、 N、 P含量与分配的影响[J]. 中国农业科学, 2000, 33(5): 65-71. Xu Y C, Shen Q R. Influence of long-term application of manure on the contents and distribution of organic C, total N and P in soil particle-sizes[J]. Sci. Agric. Sin., 2000, 33(5): 65-71.

[20] 吴洵. 茶园土壤管理与施肥技术(第2版)[M]. 北京: 金盾出版社, 2009. Wu X. Tea garden soil management and fertilization technology(2nd ed. )[M]. Beijing: JinDun Press, 2009.

[21] 刘晓利, 何园球. 不同利用方式和开垦年限下红壤水稳性团聚体及养分变化研究[J]. 土壤, 2009, 41(1): 84-89. Liu X L, He Y Q. Water-stable aggregates and nutrients in red soil under different reclamation years[J]. Soils, 2009, 41(1): 84-89.

[22] Rubek G H, Guggengerger G, Zech W, Christensen B T. Organic phosphorus in soil size separates characterized by phosphorus-31nuclear magnetic resonance and resin extraction[J]. Soil. Sci. Soc. Am. J., 1999, 63: 1123-1132.

[23] 文倩, 赵小蓉, 张书美, 等. 半干旱地区不同土壤团聚体中微生物量磷的分布特征[J]. 中国农业科学, 2005, 38(2): 327-332. Wen Q, Zhao X R, Zhang S Metal. Distribution characterisitics of microbial biomass phosphorus in different soil aggregates in semi-arid area[J]. Sci. Agric. Sin., 2005, 38(2): 327-332.

[24] 郭万伟, 肖和艾, 吴金水, 等. 红壤旱土和水稻土团聚体中磷素的分布特点[J]. 土壤学报, 2009, 46(1): 85-92. Guo W W, Xiao H A, Wu J Setal. Distribution of phosphorus in water-stable aggregates in upland and paddy red earths[J]. Acta Pedol. Sin., 2009, 46(1): 85-92.

[25] 刘恩科, 赵秉强, 胡昌浩, 等. 长期施氮、 磷、 钾化肥对玉米产量及土壤肥力的影响[J]. 植物营养与肥料学报, 2007, 13(5): 789-794. Liu E K, Zhao B Q, Hu C Hetal. Effects of long-term nitrogen, phosphorus and potassium fertilizer applications on maize yield and soil fertility[J]. Plant Nutr. Fert. Sci., 2007, 13(5): 789-794.

[26] 潘大伟, 梁成华, 杜立宇. 土壤含钾矿物的释钾研究进展[J]. 土壤通报, 2005, 36(2): 254-258. Pan D W, Liang C H, Du L Y. Progress in research on potassium release from K-beared minerals in soil[J]. Chin. J. Soil Sci., 2005, 36(2): 254-258.

[27] Song S K, Huang P M. Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids[J]. Soil Sci. Soc. Am. J., 1988, 52: 383-390.

[28] 石锦芹, 丁瑞兴, 刘友兆, 孙玉华. 尿素和茶树落叶对土壤的酸化作用[J]. 茶叶科学, 1999, 19(1): 7-12. Shi J Q, Ding R X, Liu Y Z, Sun Y H. Acidification of soil by urea and fallen tea leaves[J]. J. Tea Sci., 1999, 19(1): 7-12.

[29] 杨玉盛, 郭剑芬, 陈银秀, 等. 福建柏和杉木人工林凋落物分解及养分动态的比较[J]. 林业科学, 2004, 40(3): 19-25. Yang Y S, Guo J F, Chen Y Xetal. Comparatively study on litter decomposition and nutrient dynamics between plantations ofFokieniahodginsiiandCunninghamialanceolata[J]. Sci. Silv. Sin., 2004, 40(3): 19-25.

[30] Wang J, Fu B J, Qiu Y, Chen L D. Soil nutrients in relation to land use and slope position in the semi-arid small watershed on loess plateau in China[J]. J. Arid. Environ., 2001, 48: 537-550.

Effectsofagesofteaplantationsonchangesofnitrogen,phosphorusandpotassiumcontentsinsoilaggregates

WANG Sheng-qiang, ZHENG Zi-cheng, LI Ting-xuan*

(CollegeofResourcesandEnvironment,SichuanAgriculturalUniversity,Chengdu611130,China)

2013-03-28接受日期2013-06-09

国家自然科学基金项目(40901138); 四川省2012年度学术和技术带头人培养资金; 四川省科技厅项目(2010JY0083)资助。

王晟强(1989—), 男, 四川成都人, 硕士研究生, 主要从事土壤生态环境研究。E-mail: wsq_sicau@163.com * 通信作者 Tel: 028-87118722, E-mail: litinx@263.net

S152.4; S153.6

A

1008-505X(2013)06-1393-10

猜你喜欢
年限茶园养分
影响种公牛使用年限的几个因素与解决办法
茶园飘香
苹果最佳养分管理技术
养分
辽宁朝阳市刘禹佳问:退役士兵参加基本养老保险出现欠缴、断缴的,允许补缴吗
红六军团威震茶园渡
年轻时的流浪,是一生的养分
湄潭茶园
茶园观色
不同产地、生长年限银杏叶总多酚含量比较