梁 英,石伟杰,田传远
(中国海洋大学海水养殖教育部重点实验室,山东 青岛266003)
微藻是个体微小且能进行光合自养的单细胞藻类,分布广、种类多。微藻生长速度快、易培养、光合效率及生物量高并富含虾青素、多糖、藻蓝蛋白以及脂肪酸等多种营养组分[1]。微藻中脂肪酸含量和组成不仅影响微藻的医药和营养价值,而且还决定微藻生产的生物柴油的性能。微藻中的多不饱和脂肪酸(尤其是二十碳五烯酸和二十二碳六烯酸)不仅对防治哮喘、动脉硬化、心脏疾病以及糖尿病等疾病有明显的效果,而且还是许多鱼类、虾类和双壳类等幼虫的必需脂肪酸[2]。另外,脂肪酸组成决定脂肪酸甲酯的碳链长短、不饱和的程度等特性,而脂肪酸甲酯的这些特性决定生物柴油的十六烷值、低温流动性、氧化稳定性、碘值等性能[3-5]。因此,脂肪酸的测定对优良藻种的选育、微藻营养价值的评价,以及微藻油脂是否适合生产生物柴油的评估是十分必要的。本文分别概述了测定微藻脂肪酸时,样品前过程中不同的皂化、甲酯化和萃取方法,以期为微藻科学研究和开发利用提供理论依据。
目前脂肪酸大多采用气相色谱-质谱仪测定,其性能高并配置了高效的石英毛细管色谱柱,对脂肪酸样品的分析快速、准确。微藻油脂含有的脂肪酸大多为12碳以上的脂肪酸,其极性大、沸点高、不易挥发、高温不稳定。因此,气相色谱分析脂肪酸的组成时,一般都需要进行样品的前处理[6]。样品的前处理方法对测定的准确性和可靠性非常关键。微藻脂肪酸样品测定的前处理一般包括脂类的抽提、皂化、甲酯化、脂肪酸甲酯的萃取等几个步骤。对于脂类的抽提,一般都采用有机溶剂提取或索氏提取法,这里就不再叙述了。下面就其他几个步骤分别进行介绍。
一般在进行微藻样品的甲酯化之前,先对微藻样品进行皂化。皂化的目的是将脂肪酸和碱反应转化为脂肪酸钠盐或钾盐,而脂肪酸钠盐或钾盐为亲水性的,不断的皂化促使脂肪酸从样品中充分溶入溶剂中,有利于抽提完全[7]。皂化多采用氢氧化钾或氢氧化钠的甲醇溶液以及其他溶液。各种方法在使用时其药品的种类、药品的浓度、处理温度、处理时间上都存在较大差异。表1概述了微藻样品皂化的方法。
微藻样品进行脂肪酸测定时,一般将抽提出的脂类先进行皂化,再进行甲酯化处理。甲酯化是脂肪酸与甲醇反应生成沸点低、极性小、易挥发的脂肪酸甲酯[6]。也可不经过皂化,直接对提取的脂类进行甲酯化处理;还可以不提取样品中的脂类,而是直接对冷冻干燥的微藻样品进行甲酯化处理。甲酯化反应迅速与否、甲酯化反应完全程度等对脂肪酸的分析是至关重要的。各种甲酯化方法有各自的优缺点,适用的范围也各不相同。各种方法在使用时其药品的种类、药品的浓度、处理温度、处理时间上都存在较大差异。表2 概述了微藻甲酯化处理方法。
表1 微藻样品皂化方法概述Table 1 Summarization of the methods of saponification in microalgae
表2 微藻样品甲酯化方法概述Table 2 Summarization of the methods of methyl esterification in microalgae
如表2所示,甲酯化方法可分为:酸催化法、碱催化法以及其他一些甲酯化方法。酸催化法一般包括:盐酸甲醇法、硫酸甲醇法、三氟化硼甲醇法和三氯化硼甲醇法等。在硫酸甲醇法和盐酸甲醇法中,硫酸和盐酸的浓度不宜过高(硫酸为1%~2%,盐酸一般为5%),以免造成脂肪酸中双键结构的变化。三氟化硼甲醇溶液的有效期较短,所以需要现配现用,存放过久会产生怪峰,甚至可能导致不饱和脂肪酸损失,此法不宜测定含有环氧酸、环丙烯酸的脂肪酸[6]。碱催化法有氢氧化钾甲醇法等[6]。该法不需要皂化而直接对脂类进行甲酯化,操作简便,但不适宜甲酯化酸值>2的脂类,而且油脂样品中不能含有水,因为碱易与游离的脂肪酸反应生成脂肪酸盐,而很难甲酯化为脂肪酸甲酯[6,50,76-80]。同样 可 以 直 接 甲 酯 化 的 方 法 还 有 三 氟 化硼甲醇法和盐酸甲醇法,其中三氟化硼甲醇法适合大多数的脂类,而盐酸甲醇法更适合酸值>3的脂类[6]。乙酰氯甲醇法可直接对微藻样品进行甲酯化处理而得到脂肪酸甲酯,该法操作步骤更少,所用时间更短,且效果好[86]。重氮甲烷(CH2N2)活性很高,重氮甲烷甲醇溶液低温下可存放较长时间,甲酯化反应快、不发生副反应,适合甲酯化短链脂肪酸,但其有剧毒且浓度高时易燃易爆[6]。
微藻样品甲酯化后,一般用正己烷对脂肪酸甲酯进行萃取,也可用正己烷和其他药品的混合溶液,或用其他药品进行萃取。该步骤在脂肪酸分析中非常关键,不同的溶剂、不同的溶剂比例、不同的溶剂加入顺序适用于不同的微藻。若萃取溶剂或方法不理想,所得的脂肪酸将有损失。表3概述了不同的脂肪酸甲酯萃取方法。
表3 微藻样品脂肪酸甲酯萃取方法概述Table 3 Summarization of the extraction methods of fatty acid methyl ester in microalgae
不管是优良藻种的选育、微藻营养价值的评价,还是微藻油脂是否适合生产生物柴油的评估都需要经常测定脂肪酸含量和组成。脂肪酸测定步骤一般是先将微藻样品进行前处理(脂类抽提、皂化、甲酯化以及萃取),然后将得到的脂肪酸甲酯在气相色谱-质谱仪上分析并计算得出脂肪酸的含量和组成。碱催化法不需要皂化而直接对脂类进行甲酯化,操作简便,但不适宜甲酯化酸值>2的脂类。酸催化法使用过程中,硫酸和盐酸浓度不宜太高,而三氟化硼甲醇溶液存放期较短,需要现用现配。其中,三氟化硼甲醇法和盐酸甲醇法也可以直接甲酯化脂类,三氟化硼甲醇法适合大多数的脂类,而盐酸甲醇法更适合酸值>3的脂类。乙酰氯甲醇法不需要提脂,可直接对干燥的微藻样品进行甲酯化,操作简单,效果好。而重氮甲烷虽甲酯化反应快且不发生副反应,但其有剧毒且浓度高时易燃易爆。
作者所在实验室在测定微藻脂肪酸组成时,对微藻样品的前处理主要采用2种方法,一种是先用氢氧化钠甲醇溶液对干燥的微藻样品进行皂化,然后用盐酸甲醇溶液对样品进行甲酯化,最后用正己烷对脂肪酸甲酯进行萃取后进行气相色谱分析[15-19]。结果准确可靠,有较好的重复性。但该法所用盐酸甲醇溶液是将氯化氢气体缓慢溶解到甲醇溶液配制而成的。所用的氯化氢气体不能从浓盐酸直接获得,而必须通过一定的化学反应,比如浓硫酸与氯化钙反应而获得。盐酸甲醇溶液配制过程存在一定的风险,操作需要格外小心,操作时间也较长。目前本实验室主要采用乙酰氯甲醇法直接对干燥的微藻样品进行甲酯化,该法减少了提脂及皂化的步骤,直接对样品甲酯化然后进行萃取,操作步骤少且效果好,是微藻脂肪酸测定时理想的样品前处理方法。但乙酰氯遇水剧烈分解,因此在配制乙酰氯甲醇溶液时,一定要使用无水甲醇且需现配现用[83-85]。
关于皂化和甲酯化的处理温度和处理时间,不同作者的结果差异很大,温度最高用到100℃,处理时间最长达16h。作者对上述所采用的2种前处理方法进行了多次不同温度和不同处理时间的实验,结果表明,皂化和甲酯化温度太低,时间太短,甲酯化不完全,影响实验结果,但并不是处理温度越高,处理时间越长,结果就越好。达到一定的温度和时间后,即使再增加处理温度,延长处理时间,结果也并没有变化。上述处理一般在水浴锅中进行,如果温度太高,时间太长,溶剂很容易挥发,增加了操作难度,延长了样品处理时间。因此,可以根据样品的不同特点,进行预备实验,找出合适的处理温度和时间。
关于脂肪酸甲酯萃取时溶剂的选择,一般用正己烷或石油醚萃取能达到较好的结果,但有时需要加入蒸馏水或饱和盐水以促进分层。但每种微藻情况不同,例如本文的实验表明,对于三角褐指藻,萃取时先加正己烷,震荡后再加蒸馏水,分层快,效果好[83-85]。但用同样的方法处理牟氏角毛藻和筒柱藻的样品时,则上层泡沫多,不易分层,效果不理想,而如果先加蒸馏水,震荡后再加正己烷,则能取得较好的萃取效果[83-85]。而绿藻中的海绿球藻、微绿球藻和金藻中的棕鞭藻萃取时,只需加入2~3mL的正己烷就可清晰地分层。
综上所述,根据实际需要选择合适的脂肪酸测定方法,不仅可以降低实验成本、省时省力,而且对微藻科学研究和开发利用都具有重要的意义。
[1] 邹树平,吴玉龙,杨明德,等.微藻的综合开发利用 [J].水产科学,2007,26(3):179-181.
[2] 梁英,麦康森.微藻EPA和DHA的研究现状及前景 [J].水产学报,2000,24(3):289-296.
[3] Yoo C,Jun S Y,Lee J Y,et al.Selection of microalgae for lipid production under high levels carbon dioxide[J].Bioresource technology,2010,101(1):71-74.
[4] Damiani M C,Popovich C A,Constenla D,et al.Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock[J].Bioresource technology,2010,101(11):3801-3807.
[5] Knothe G.Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters[J].Fuel Processing Technology,2005,86(10):1059-1070.
[6] 余珠花.气相色谱法中油脂脂肪酸衍生化方法及其选择 [J].粮食加工,2004,29(6):64-66.
[7] 彭兴跃,王大志,徐立,等.毫克级微藻样品中脂肪酸的分离及测定 [J].台湾海峡,1998,17(3):289-293.
[8] 陆开宏,林霞,钱云霞.三角褐指藻不同藻株脂肪酸组成的研究[J].中国水产科学,2000,7(1):20-24.
[9] Desvilettes C,Bourdier G,Breton J C.On the occurrence of a possible bioconversion of linolenic acid into docosahexaenoic acid by the copepod Eucyclops serrulatus fed on microalgae[J].Journal of plankton research,1997,19(2):273-278.
[10] Ishida Y,Hiragushi N,Kitaguchi H,et al.A highly CO2‐tolerant diatom,Thalassiosira weissflogii H1,enriched from coastal sea,and its fatty acid composition[J].Fisheries Science,2000,66(4):655-659.
[11] Lavaniegos B E,Lopez-Cortes D.Fatty acid composition and community structure of plankton from the San Lorenzo Channel,Gulf of California [J].Estuarine,Coastal and Shelf Science,1997,45(6):845-854.
[12] Cho E S,Kim G Y,Choi B D,et al.A comparative study of the harmful dinoflagellates Cochlodinium polykrikoides and Gyrodinium impudicumusing transmission electron microscopy,fatty acid composition,carotenoid content,DNA quantification and gene sequences[J].Botanica Marina,2001,44(1):57-66.
[13] 黄冠华,陈峰.环境因子对异养小球藻脂肪酸组分含量和脂肪总酸产量的影响 [J].可再生能源,2009,27(3):65-69.
[14] Yang H L,Lu C K,Chen S F,et al.Isolation and characterization of Taiwanese heterotrophic microalgae:screening of strains for docosahexaenoic acid(DHA)production[J].Marine Biotechnology,2010,12(2):173-185.
[15] 梁英,麦康森,孙世春,等.对筒柱藻属33株总脂含量及脂肪酸组成的比较研究 [J].青岛海洋大学学报:自然科学版,1999,29(3):457-462.
[16] Liang Y,Mai K S,Sun S C.Effects of harvest stage on the total lipid and fatty acid composition of four Cylindrotheca strains[J].Chinese Journal of Oceanology and Limnology,2002,20(2):157-161.
[17] Liang Y,Mai K S,Sun S C.Effect of NaNO3Concentrations on the Growth and Fatty Acid Compositions of Nitzschia closterium and Chaetoceros gracilis [J].Marine Science Bulletin,2003,5(1):69-74.
[18] Liang Y,Mai K S.Effect of growth phase on the fatty acid compositions of four species of marine diatoms[J].Journal of Ocean University of China(English Edition),2005,4(2):157-162.
[19] Liang Y,Mai K S,Sun S C.Differences in growth,total lipid content and fatty acid composition among 60clones of Cylindrotheca fusiformis [J].Journal of Applied Phycology,2005,17(1):61-65.
[20] Kumari P,Kumar M,Gupta V,et al.Tropical marine macroalgae as potential sources of nutritionally important PUFAs [J].Food Chemistry,2010,120(3):749-757.
[21] 李宪璀,范晓,韩丽君,等.中国黄、渤海常见大型海藻的脂肪酸组成 [J].海洋与湖沼,2002,33(2):215-224.
[22] Rowland S J,Allard W G,Belt S T,et al.Factors influencing the distributions of polyunsaturated terpenoids in the diatom,Rhizosolenia setigera [J].Phytochemistry,2001,58(5):717-728.
[23] 吴瑞珊,魏东.Fe对眼点拟微球藻的生长和脂肪酸组成的影响[J].海洋科学,2008,32(7):93-96.
[24] 刘平怀,李兰芝.三种螺旋藻的脂肪酸组成的比较研究 [J].热带作物科技,1999(3):48-49.
[25] Gapasin R,Duray M N.Effects of DHA-enriched live food on growth,survival and incidence of opercular deformities in milkfish(Chanos chanos)[J].Aquaculture,2001,193(1-2):49-63.
[26] 梁惠,冷凯良,贺娟,等.两种海藻物提取物的制备及脂肪酸GC-MS分析 [J].食品科学,2005,26(12):184-186.
[27] 马夏军,洪爱华,梁智渊,等.中国南海总状蕨藻中脂肪酸和甾醇GC-MS分析 [J].广东化工,2005,32(4):19-21.
[28] 刘梅芳,王海英.氮源及其浓度对三角褐指藻生长及其脂肪酸组成的影响 [J].中南民族大学学报:自然科学版,2008,27(2):32-35.
[29] 吕冬伟,宋茜,王旭晨.小球藻和三角褐指藻中脂肪酸和长链烷烃组成的比较研究 [J].海洋科学,2009,33(5):28-32.
[30] Xu X Q,Beardall J.Effect of salinity on fatty acid composition of agreen microalga from an antarctic hypersaline lake[J].Phytochemistry,1997,45(4):655-658.
[31] 蒋汉明,张凤珍,孙凌云,等.Fe3+对三角褐指藻生长和脂肪酸组成的影响 [J].食品科学,2005,26(6):43-46.
[32] 徐继林,严小军,王晓申,等.巴夫藻脂肪酸和甾醇的同步测定研究 [J].海洋科学,2004,28(4):19-24.
[33] Riebesell U,Revill A T,Holdsworth D G,et al.The effects of varying CO2concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi [J].Geochimica et Cosmochimica Acta,2000,64(24):4179-4192.
[34] 徐继林,严小军,周成旭,等.一种海洋席藻淡化过程中脂肪酸组成的应急变化 [J].水生生物学报,2004,28(4):374-379.
[35] Fabregas J,Aran J,Morales E D,et al.Modification of sterol concentration in marine microalgae[J].Phytochemistry,1997,46(7):1189-1191.
[36] Ghazala B,Naila B,Shameel M.Fatty acids and biological activities of crude extracts of freshwater algae from Sindh [J].PakistanJournal of Botany,2010,42(2):1201-1212.
[37] 李润,周春玉.金藻Isochrysis Galbana中DHA的分离与分析[J].应用化学,2001,18(6):454-456.
[38] Blanchemain A,Grizeau D.Eicosapentaenoic acid content of Skeletonema costatum as a function of growth and irradiance;relation with chlorophyll a content and photosynthetic capacity[J].Journal of experimental marine biology and ecology,1996,196(1-2):177-188.
[39] 周秋香,张德强,孙汉文.三角褐指藻的培养条件研究 [J].河北大学学报:自然科学版,2001,21(1):68-71.
[40] 林学政,李光友.11种微藻脂类和EPA/DHA组成的研究 [J].黄渤海海洋,2000,18(2):36-40.
[41] 李文权,王宪,陈清花,等.超声波对湛江等鞭金藻生长和脂肪酸组成的影响 [J].海洋学报,2002,24(3):94-100.
[42] Schneider J C,Roessler P.Radiolabeling studies of lipid and fatty acid in Nannochloropsis(Eustigmatophyceae),an oleaginous marine alga[J].Journal of phycology,1994,30(4):594-598.
[43] Sheng J,Vannela R,Rittmann B E.Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803 [J].Bioresource Technology,2011,102(2):1697-1703.
[44] Dembitsky V M,Rezankov H,Rezanka T,et al.Variability of the fatty acids of the marine green algae belonging to the genus Codium [J].Biochemical Systematics and Ecology,2003,31(10):1125-1145.
[45] Tatsuzawa H,Takizawa E.Changes in lipid and fatty acid composition of Pavlova lutheri [J].Phytochemistry,1995,40(2):397-400.
[46] Nichols D S,Hart P,Nichols P D,et al.Enrichment of the rotifer Brachionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids[J].Aquaculture,1996,147(1-2):115-125.
[47] Gelin F,Volkman J K,De Leeuw J W,et al.Mid-chain hydroxy long-chain fatty acids in microalgae from the genus Nannochloropsis[J].Phytochemistry,1997,45(4):641-646.
[48] Volkman J K,Dunstan G A,Jeffrey S W,et al.Fatty acids from microalgae of the genus Pavlova [J].Phytochemistry,1991,30(6):1855-1859.
[49] Mansour M P,Volkman J K,Holdsworth D G,et al.Very-longchain(C28)highly unsaturated fatty acids in marine dinoflagellates[J].Phytochemistry,1999,50(4):541-548.
[50] 寇秀颖,于国萍.脂肪和脂肪酸甲酯化方法的研究 [J].食品研究与开发,2005,26(2):46-47.
[51] Koven W,Barr Y,Lutzky S,et al.The effect of dietary arachidonic acid(20:4n-6)on growth,survival and resistance to handling stress in gilthead seabream (Sparus aurata)larvae [J].Aquaculture,2001,193(1-2):107-122.
[52] Wahlen B D,Willis R M,Seefeldt L C.Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae,cyanobacteria,and wild mixed-cultures [J].Bioresource technology,2011,102(3):2724-2730.
[53] 刘建国,刘伟.雪藻高密度连续培养中生物量和花生四烯酸的高产率 [J].海洋与湖沼,2002,33(5):499-508.
[54] Mohan S V,Devi M P,Mohanakrishna G,et al.Potential of mixed microalgae to harness biodiesel from ecological waterbodies with simultaneous treatment[J].Bioresource Technology,2011,102(2):1109-1117.
[55] Mclarnon-Riches C J,Rolph C E,Greenway D L A,et al.Effects of environmental factors and metals on Selenastrum capricornutum lipids[J].Phytochemistry,1998,49(5):1241-1247.
[56] Jaschinski S,Brepohl D,Sommer U.The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.):stable isotope and fatty acid analyses[J].A-quatic Sciences-Research Across Boundaries,2011,73(1):91-101.
[57] de Lange H,Van D.Effects of UVB‐irradiated algae on life history traits of Daphnia pulex [J].Freshwater Biology,1997,38(3):711-720.
[58] Caers M,Coutteau P,Sorgeloos P.Incorporation of different fatty acids,supplied as emulsions or liposomes,in the polar and neutral lipids of Crassostrea gigas spat[J].Aquaculture,2000,186(1-2):157-171.
[59] Freites L,Labarta U,Fernandez-Reiriz M J.Evolution of fatty acid profiles of subtidal and rocky shore mussel seed (Mytilus galloprovincialis,Lmk.).Influence of environmental parameters[J].Journal of Experimental Marine Biology and Ecology,2002,268(2):185-204.
[60] 冯福应,杨文,林伟,等.海洋微藻Chlorellasp.1061的脂类特征与分类探讨 [J].海洋与湖沼,2004,35(5):453-458.
[61] Levine R B,Costanza-Robinson M S,Spatafora G A.Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production[J].Biomass and Bioenergy,2011,35(1):40-49.
[62] Wang L,Li Y,Chen P,et al.Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp [J].Bioresource Technology,2010,101(8):2623-2628.
[63] Viso A C,Marty J C.Fatty acids from 28marine microalgae[J].Phytochemistry,1993,34(6):1521-1533.
[64] Gressler V,Yokoya N S,Fujii M T,et al.Lipid,fatty acid,protein,amino acid and ash contents in four Brazilian red algae species[J].Food Chemistry,2010,120(2):585-590.
[65] Nanton D A,Lall S P,Mcniven M A.Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock,Melanogrammus aeglefinus L.[J].Aquaculture Research,2001,32(s1):225-234.
[66] Nanton D A,Castell J D.The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod,Tisbe sp.,for use as a live food for marine fish larvae[J].Aquaculture,1998,163(3-4):251-261.
[67] Copeman L A,Parrish C C,Brown J A,et al.Effects of docosahexaenoic,eicosapentaenoic,and arachidonic acids on the early growth,survival,lipid composition and pigmentation of yellowtail flounder(Limanda ferruginea):a live food enrichment experiment[J].Aquaculture,2002,210(1-4):285-304.
[68] Napolitano G E,Heras H,Stewart A J.Fatty acid composition of freshwater phytoplankton during a red tide event [J].Biochemical systematics and ecology,1995,23(1):65-69.
[69] Volkman J K,Jeffrey S W,Nichols P D,et al.Fatty acid and lipid composition of 10species of microalgae used in mariculture[J].Journal of Experimental Marine Biology and Ecology,1989,128(3):219-240.
[70] Berge J P,Gouygou J P,Dubacq J P,et al.Reassessment of lipid composition of the diatom,Skeletonema costatum [J].Phytochemistry,1995,39(5):1017-1021.
[71] Xu X Q,Beardall J,Hallam N D.Modification of fatty acid composition in halophilic antarctic microalgae [J].Phytochemistry,1998,49(5):1249-1252.
[72] Mooney H M,Cooney J J,Baisden C M,et al.Fatty acids of Dunaliella tertiolecta and Skeletonema costatum grown in the presence of Phenyltin compounds[J].Botanica marina,1995,38(1-6):423-430.
[73] Bao X,Ohlrogge J.Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos [J].Plant physiology,1999,120(4):1057.
[74] Renaud S M,Parry D L,Thinh L V,et al.Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp.and Nannochloropsis oculatafor use in tropical aquaculture[J].Journal of Applied Phycology,1991,3(1):43-53.
[75] Wikfors G H,Patterson G W,Ghosh P,et al.Growth of postset oysters,Crassostrea virginica,on high-lipid strains of algal flagellates Tetraselmis spp.[J].Aquaculture,1996,143(3-4):411-419.
[76] 卢丽娜,孙利芹,田焕玲,等.32株海洋微藻总脂含量及其脂肪酸组成的研究 [J].中国油脂,2009,34(11):68-73.
[77] 孙利芹,杨林涛.环境因子对球等鞭金藻脂肪酸含量和组成的影响 [J].食品研究与开发,2006,27(5):11-13.
[78] Xu X Q.Fatty acids of six Codium species from southeast Australia[J].Phytochemistry,1998,48(8):1335-1339.
[79] 张秋会,马莺.气相色谱法测定海洋微藻中二十碳五烯酸和二十二碳六烯酸 [J].色谱,2004,22(6):662.
[80] 张秋会,马莺.高产EPA和DHA藻株的筛选 [J].西部粮油科技,2003,28(6):51-53.
[81] Krohn B J,Mcneff C V,Yan B,et al.Production of algae-based biodiesel using the continuous catalytic Mcgyan(R)process[J].Bioresource technology,2011,102(1):94-100.
[82] Okuyama H,Morita N,Kogame K.Occurrence of octadecapentaenoic acid in lipids of a cold stenothermic alga,prymnesiophyte strain B1[J].Journal of phycology,1992,28(4):465-472.
[83] Liang Y,Beardall J,Heraud P.Effects of nitrogen source and UV radiation on the growth,chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutumand Chaetoceros muelleri (Bacillariophyceae)[J].Journal of Photochemistry and Photobiology B:Biology,2006,82(3):161-172.
[84] Liang Y,Beardall J,Heraud P.Changes in growth,chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutumand Chaetoceros muelleri(Bacillariophyceae)[J].Botanica Marina,2006,49(2):165-173.
[85] Liang Y,Beardall J,Heraud P.Effect of UV radiation on growth,chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri(Bacillariophyceae)[J].Phycologia,2006,45(6),605-615.
[86] Lepage G,Roy C C.Improved recovery of fatty acid through di-rect transesterification without prior extraction or purification.[J].Journal of Lipid Research,1984,25(12):1391.
[87] Lin Q,Lin J.Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga[J].Bioresource Technology,2011,102(2):1615-1621.
[88] 廖启斌,李文权,陈清花,等.营养盐对三角褐指藻脂肪酸含量与百分组成的影响 [J].海洋环境科学,2000,19(2):6-9.
[89] 蔡阿根,郑爱榕,李文权,等.海洋微藻中脂肪酸的气相色谱分析 [J].海洋技术,1998,17(4):64-68.
[90] Nitsan Z,Mokady S,Sukenik A.Enrichment of poultry products withω3fatty acids by dietary supplementation with the algaNannochloropsis and mantur oil[J].Journal of agricultural and food chemistry,1999,47(12):5127-5132.