17. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为_______.
18. 我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对_______道题.
三、 解答题(56分)
19. (本题8分)解不等式2x-3<■,并把解集在数轴上表示出来.
20. (本题9分)解不等式组4(x-1)≥x+5,■<■,并把解集在数轴上表示出来.
21. (本题9分)已知不等式5x-2<6x-1的最小正整数解是方程3x-■ax=6的解,求a的值.
22. (本题9分)已知方程组3x+2y=m-8,2x+y=m-6.m为何值时,x>y?
23. (本题10分)王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的促销方式不同:在甲商场一次性购物超过100元,超过部分八折优惠,在乙商场一次性购物超过50元,超过部分打九折优惠,那么她在甲商场购物多少元就比在乙商场购物优惠?
24. (本题11分)某超市同时购进A、B两种商品共用人民币36 000元,全部售完后共获利6 000元,两种商品的进价、售价如下表:
(1) 求本次超市购进A、B两种商品的件数;
(2) 第二次进货:A、B件数皆为第一次的2倍,销售时,A商品按原售价销售,B商品打折出售,全部售完后为使利润不少于11 040元,则B商品每件的最低售价应为多少?
参考答案
1. A 2. D 3. D 4. C 5. D 6. D 7. A 8. C
9. -x≥0 10. 答案不唯一,如:x≤1 11. x>4 12. k>2 13. x>1 14. 6≤a<9
15. 3或-3 16. 1 17. 40人 18. 14
19. 原不等式的解集为x<2,在数轴上表示略 20. 不等式组的解集是x≥3,解集在数轴上表示略 21. 解不等式5x-2<6x-1得x>-1,所以不等式的最小正整数解为x=1.把x=1代入方程3x-■ax=6,得3-■a=6,解得a=-2. 22. 由方程组解得,x=m-4,y=-m+2,则m-4>-m+2,解得m>3 23. 设她在甲商场购x元(x>100)就比在乙商场购物优惠,根据题意,得:100+0.8(x-100)<50+0.9(x-50),解得x>150.答:她在甲商场购物超过150元就比在乙商场购物优惠
24. (1) 设本次超市购进A种商品的件数为x件,B种商品的件数为y件,依题意,得120x+100y=36 000,(138-120)x+(120-100)y=6 000.解得x=200,y=120.答:本次超市购进A种商品200件,B种商品120件;(2) 设B商品每件的售价为x元,依题意,得(138-120)×200×2+(x-100)×120×2≥11 040,解得:x≥116.答:B商品每件的最低售价为116元.
(命题人:建湖县近湖中学 王竞进)