邵为平
《数学课程标准》指出数学是研究数量关系和空间形式的科学。可见《数学课程标准》十分强调培养和发展学生的空间观念,而培养空间观念的主要目的是让学生更好地认识和理解人类的生存空间。“空间与图形”作为小学数学四大内容领域之一,在数学教学中占有重要的地位。如何更科学地实施教学,真正达到新课标所提出的要求,下面谈谈自己粗浅的认识。
一、拓展认识视野
学生在初中学习数轴、平面几何,高中学习立体几何、解析几何等数学内容,非常重要的基础在小学。这些高一级知识,不仅要求学生有一种基础性的几何知识,更是要有清晰的空间观念。例如平面几何中的添辅助线,非常重要的要有一种对图形的切拼构造能力和图形的对称、旋转和平移的几何变换能力。学生要学习和掌握这些复杂的几何知识,需要丰富的空间观念。这种能力一方面是在学习这些知识的过程中生成的,但另一方面也要依赖于学生在小学、幼儿园阶段的空间与几何的经验、感觉的积累,如果在少儿阶段不积累这些空间感觉和经验,到后来这种感觉就失去。就像施那普拉在离任中国足球队主教练时对中国足球发展的建言中提到的那样:中国足球队员缺少踢球感觉,这些感觉本应在少儿时期于街道、弄堂里就要完成的,而现在要到专业训练时再来寻找,这就困难了。没有这种类似于直觉的引领,球队水平就很难提高,也就是没有练好“童子功”。其实所有的学习都是如此,空间与图形也不例外。
从现实中的物体和几何体出发,就会涉及把现实空间中的经验迁移到几何空间中,以此把握几何空间,再用在几何空间中抽象而成的特征、性质来解释现实空间、解决现实空间中的问题,在这样抽象、还原的过程中空间观念才能建立。从几何体与平面图形之间的关系出发,就会涉及到平面从几何体上剥离下来的;如何剥离,就又涉及到视图,从各个不同的方向观察。从方向与位置出发,就会涉及到距离和角度,涉及到前后左右上下、东南西北以及关于垂直与水平方向组成的坐标;会涉及到有关变换,平移、旋转与对称,以及这些变换过程中的变化部分与不变部分等等,由此就形成了一条知识链。只有以上这些都能够协调起来,而且各方面之间有一种内在的逻辑联系,由此组合成一个整体,空间观念才能真正得以确立。
二、加强对教材的理解
1.教材的整体框架是依据空间与图形的四个方面有序地展开。整体上是螺旋式上升,让学生对几何事实和空间观念有一个逐步深入的过程。围绕两条大的线索:一条是以图形的空间关系研究为线索,主要是研究空间的三个方面:①现实空间和几何空间之间的关系。几何空间源于现实空间,是现实空间的抽象,同时在几何空间中获得的认识只有再回到现实中去进一步认识、把握现实空间,才能使抽象空间与现实空间融为一体,推动学生空间观念的生成。②体与体、面与面、线与线之间的关系。它们之间的关系就产生了位置、方位与变换,就产生了平行、垂直与角,就有各种不同的拼搭与组合。由此内化成关于空间的若干结构,这是空间观念。③体与面、面与线、体与线之间的关系,这些关系的形成依赖于视线与投影、分解与分析、想象与推理,在这些关系的探求就会有三维、二维和一维图形之间的相互转化,这种转化越多、越灵活,空间观念的生成就越迅速与牢固。另一条是以数量关系研究为线索,也主要体现在三个方面:①用一维长度研究图形中线段的长短,图形之间的距离;②用二维面积来把握图形的大小;③用三维体积来研究图形占据空间的多少。以上两条线索不是分离的,而是融合的。
2.教材在编写中非常注重综合与渗透。例如在低年级的认识基本的规则图形时,是从长、正方形出发,再通过把长、正方形分割成若干三角形,再由这些三角形通过拼搭形成平行四边形和梯形,这样的设计既渗透了面积守恒的观念,又渗透了拼搭中相等边的理解,这些拼配对以后学习对称、旋转、图形面积的推导都是一个基础。
三、加强教学实践的研究
1.空间与图形的学习应该在活动中建构。例如在教学三角形“任意两边之和大于第三边”这条原理时,分两个层次教学:先是让学生从五根小棒中任意抓三根围一围,让学生直观感知到有些是可以围成的,有些是围不成的,同时使学生产生一种空间直觉,当两条较短的边合起来小于最长边是围不成的,当两条较短的边合起来大于最长边是可以围成的;接着让学生边围边有序地记录每根小棒的长度,并对此进行必要的分类;最后让学生在空间直觉引领下形成的三边关系几何模型和基于数据寻找三边关系的代数模型这两者的相互作用中抽象出三角形三边之间的关系。从以上片断中我们可以看出,只有在操作与实践活动的探究中才能把握几何空间特征和性质的实质,也就是把握空间既要有活动,又要有思考。
2.知识是过程与结果的双重建构。新课程强调学生在学习过程中的感受与体验。例如教学“面积和面积单位”这一课时,提供了大量资源和素材让学生围绕物体表面和平面图形,通过看一看、摸一摸、画一画、想一想、比一比其大小。在学生大量生动的实践活动和感受体验的基础上,再引导学生进行必要的抽象和概括,提升到物体表面和平面图形的大小叫面积。这样既有丰富的过程,又有基本的抽象,过程与结果之间相互作用,使学生的理解既稳定又开放,既抽象又具体。
总之,对空间与图形数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考,帮助学生建立空间观念;让数学教学生活化,帮助学生学好数学,用上数学,服务于我们的生活。