夏春玲
数学课程标准中明确提出,要“切实培养学生解决实际问题的能力”,要求“增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进行探索、猜测、判断、证明、运算、检验使问题得到解决。”这些要求不仅符合数学本身发展的需要,也是社会发展的需要。正是在这种状况下,数学建模教学被提上了日程,它是新世纪数学教育改革的一个重要方向。在数学教学中构建数学模型,借用数学模型处理各类问题,培养学生具有从实际问题中获取信息,建立数学模型,分析问题与解决问题的基本能力已成为数学教学改革的一个方向,是实施素质教育的一个有效途径。
一、数学建模的定义
所谓数学建模,就是把所要研究的实验问题,通过数学抽象构造出相应的数学模型,再通过数学模型的研究,使原问题获得解决的过程。
二、初中数学建模教学的理念
建模过程是理论与实践的有机结合。强化数学建模教学,不仅能使学生更好地掌握数学基础知识,也是为了增强应用数学的意识,提高分析问题和解决问题能力。
1. 各行各业的各种问題都可能数学建模,归结为数学问题的求解,因此进行数学建模和应用性问题的教学意义十分重大:(1)因为是从实际提炼出来,而后又用之解决问题,故可激发学生极大的兴趣;(2)学会了主动学习,学会了读书、学会了去索取自己所要学的知识,对数学有了新的认识,学习数学的兴趣更高了,更自觉了;(3)运用的意识和应用的能力得到锻炼,激发了他们的创新意识和创新能力;(4)促进数学教学改革,有利于更新观念,更新知识。
2. 数学的发展很大程度上是由数学的应用所推动的,实际生产与生活中所涌现的各种数学问题,要求从数学理论上寻找合理的解决方法,如果旧有的理论已经无法解决,预示着一个新的研究领域的产生,必须预示着一种新的数学理论的诞生。
3. 学以致用本来就是教育的最重要原则之一,不管是为以后有用或有一部分在学的时候马上就能用上都是学习的目的。一个具有强烈应用意识的学生,他(她)无论走到哪里无论碰到什么问题,他(她)都会看一看、问一问、想一想,这里有没有与数学有关的问题,如果有,这是一个什么样的数学问题,能否用已学过的数学知识、方法来解决它,若不能用已有的知识和方法去解决它,能否自己去找参考书寻求恰当的解决方法,或者向老师与专家请教,不断总结。经过总结的优秀品质不断得到培养,强烈的求知欲油然而生,而且由于是实际问题的驱动,必须有一种实事求是的学风,夸夸其谈是不行的,这样的学生具有强烈的应变能力,从而也一定具有很强的应试能力。更重要的是,这样的学生对数学的作用有正确的认识和理解,决不会无端地排斥数学理论甚至纯数学理论研究的重要性,深切知道应用中提出的许多关键问题往往取决于数学理论研究成果。
4. 素质教育的主要目的是全面提高学生的综合素质,就数学来说,一个很突出的方面是应用意识的培养,数学教学的根本目的是发展思维能力。
三、数学建模的教学原则
1. 着重发展学生能力,特别是应用能力,包括:计算、推理、空间想象以及辨明关系、形式转化、驾驭计算工具、查阅文献、口头和书面的分析与交流。
2. 强调计算工具的使用:不仅在计算过程中,而且在猜想、探索、争辨、发现、模拟、证明、作图、检验中使用。
3. 强调学生的积极性与主动性:教师不应只是讲演或者总是正确的指导者,还可以扮演不同的角色:模特——不仅演示正确的开始,也表现失误和拨乱反正的思维技能。参谋——提出建议和可参考的信息,但不能替学生作决策。询问者——故作不知,问原因,找漏洞,督促学生弄清楚,说明白,完成进度。仲裁者和鉴赏者——评判学生工作及成果的价值、意义、优劣,鼓励学生有创造新的想法和做法。
4. 结合学生实际水平,分层次逐步推进,结合正常教学的教材内容,结合正常的课堂教学在部分环节切入应用和建模内容。
总之,数学应用和建模能力也是一项专门的能力,它与学习、掌握纯粹数学的能力有密切关系,但并不等价,应用的意义、技巧、方法、能力也需要有一个培养锻炼、提高的过程。数学建模的过程,要善于透过实际问题的现象,抓住数学问题的本质,寻求内在联系,综合运用数学知识。由于初中学生知识水平和认知能力的限制,数学建模能力的培养要适时渗透,反复训练,及时归纳,方能水到渠成。