白玉莲
摘要:数学概念的正确理解是学生学习数学知识的基石,数学是在概念的理解上进行创造性的运用,学生必须将概念作为学习的工具与技能.数学概念是学习新知识的第一步,高中数学概念尤为重要,本文在分析高中数学概念重要性的基础上,对概念教学的方式进行探析。数学知识中最普遍的形式是概念,概念是教学内容的基本点,是逻辑导出定理、公式、法则的出发点,是建立理论系统的着眼点,是理解和掌握数学理论、方法的基础,数学概念的学习可以说是学生学习数学的根本前提。学生学习数学概念效果如何直接影响着学生数学知识的理解与掌握,关系到学生数学能力的培养与提高。所以对如何进行高中数学概念教学才能使学生理解和掌握这一课题的研究是十分必要的。
关键词:高中数学;概念教学
一、 认知主义学习观与教学观
对传统的中学数学概念教学的反思数学概念的教学是数学教学中非常重要的一个环节。数学概念相对比较抽象,难以把握,教材中一般只给出数学概念的定义,省略了形成过程,给学生学习造成了一定困难,Ⅲ所以教师的教学观念和方法就显得特别重要。当前一大部分中学数学教师存在这样的传统教学观念:(1)把知识看成是定论,重结果轻过程;(2)把学习看成是知识从外到内的输入,重灌输轻引导;(3)低估了学习者的认知能力、知识经验及其差异性,重“教”轻“学”;(4)在教学中表现出了过于简单化的倾向。
(一) 认知主义的数学学习观与教学观
用认知主义学习理论指导数学教学就形成了认知主义的数学学习观和数学教学观。
(二) 认知主义的数学学习观
数学学习观是指对数学学习本质的认识,认知主义认为:数学学习是一个主
动的、积累的、建构的、诊断的、情境化的具有目标导向的过程(Shuell,1988)。
数学学习不会自动地产生,而需要学生进行大量的、高密度的心理活动。这些活
动涉及学习者对已获得知识进行意义归属;将新知识整合到已有的知识结构中或
智力模型中。此外意义学习是有目标导向的。
二、 高中数学教学概念的特征
数学概念具有很多其他学科概念不具备的特性,数学概念作为一种思维形式,反映着事物内部的本质特质,其具有双重性与抽象性的特征.在使用符号化与形式化的数学语言后,数学概念也更加抽象,高度抽象的概念都是在具体模型之上
建立的.数学概念的描述有必要借助符号化的语言,很多意思不能用汉字直观的表示出来,因此,强调符号的作用,可以将抽象化的数学概念形式化.数学概念也具有很强的系统性,概念之间的联系也较为广泛直接,学生可以在学习小概念的基础上,逐步扩充知识面,对整个知识体系有一个系统的了解.数学概念是在不断更新与发展的,因此,在高中数学的教学过程中,有必要提高概念教学的重视度,让学生对高中数学概念有个较为系统且深刻的掌握,为今后数学学习奠定基础。
概念,是人们对事物本质的认识,是逻辑思维的最基本单元和形式u J.概念是人们用于认识和掌握自然现象之网的纽结,是认识过程中的阶段.思维要正确地反映客观现实的辩证运动,概念就必须是辩证的,是主观性与客观性、特殊性与普遍性、抽象性与具体性的辩证统一.概念还必须是灵活的、往返流动的和相互转化的,是富有具体内容的、有不同规定的、多样性的统一心1.人类对真理的认识,是在一系列概念的形成中,在概念的不断更替和运动中,在一个概念向另一个概念的转化中实现的.恩格斯说:“在一定意义上,科学的内容就是概念的体系.”而数学的定理、法则、运算的逻辑基础就是数学概念,它是解决数学问题的基础和重要工具,同时,高中的概念明显比初中的增加很多,因此,强化概念教学是建立理论体系的中心环节和解决问题的前提,高中数学教师为了提高教学效果,对其必须予以重视.下面谈一些数学概念教学中应注意的问题。
三、在体验数学概念产生的过程中认识概念
数学概念的引入,应从实际出发,创设情景,提出问题:通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。如在“异
面直线”概念的教学中,教师应先展示概念产生的背景,如在长方体模型中,当学生找出两条既不平行又不相交的直线时,教师告诉学生像这样的两条直线就叫做异面直线,接着提出“什么是异面直线”的问题,让学生相互讨论,尝试叙述,
经过反复修改补充后,给出简明、准确、严谨的定义:“我们把不在任何一个平面上的两条直线叫做异面直线”。在此基础上,再让学生找出教室或长方体中的异面直线,最后以平面作衬托画出异面直线的图形。学生经过以上过程对异面直线的概念有了明确的认识,同时也经历了概念发生发展过程的体验。
四、在挖掘新概念的内涵与外延的基础上理解概念
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:(1)用直角三角形边长的比刻画的锐角三角函数的定义;(2)用点的坐标表示的锐角三角函数的定义;(3)任意角的三角函数的定义。由止己慨念衍生出:(1)三角函数值在各个象限的符号;(2)三角函致线;(3)同角三角函数的基本关系式;(4)三角函数的凼象与性质;(5)三角函数的诱导公式等二可见,三角凼数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键作用。“磨刀不误砍柴工”,重视概念教学,挖掘概念的内涵与外延,有利于学生理解概念。
结语
概念教学是数学教学的重要组成部分,为提高高中数学概念教学的深度与广度,提高学生对概念学习的重视度,本文从概念教学的路径进行分析,提出了三种概念教学的方式,从概念的实际教学意义出发,希望能通过概念教学,提高学生学习数学的兴趣度,提升高中数学教学的整体质量与水平.,在概念教学中,要根据课标对概念教学的具体要求,创造性地使用教材。对教材中干扰概念教学的例子要更换,对脱离学生实际的概念运用问题要大胆删去,优化概念教学设计,把握概念教学过程,真正使学生在参与的过程中产生内心的体验和创造,达到认识数学思想和本质的目的。
参考文献:
[1] 杨帆 高中数学概念教学应注意的几个问题[期刊论文]-辽宁师专学报(自然科学版)2009,11(3).
[2] 王世明 高中数学概念教学[期刊论文]-读写算:教育教学研究2011(41).
[3] 周文贤 高中数学新课标的教育理念及其应用[期刊论文]-四川教育学院学报2006,22(4).
[4] 葛敏 也谈新课标下高中数学概念教学[期刊论文]-学周刊B版2011(4).
[5] 许其松 新课程理念下高中数学概念教学的几点思考[期刊论文]-中学课程辅导(江苏教师)2011(5).