李冬梅 刘伟俊
摘 要:主要研究唯一分解整环上的多项式环中多元多项式互素.从一元多项式结式的经典定义出发,结合推广的结式性质,给出系数为唯一分解整环上的多个多元多项式是否互素、或是否存在非平凡公因子判定的充分必要条件.
关键词:结式;多项式互素;公因子; 多项式环
中图分类号:O153 文献标识码:A
Resultants and Coprimeness of Polynomials
LI Dongmei1,2, LIU Weijun1
(1. School of Mathematics and Statistics, Central South Univ, Changsha,
Hunan 410075, China; 2.Dept of Mathematics and Computing Science, Hunan Univ
of Science and Technology, Xiangtan, Hunan 411201, China)
Abstract: The problem of multivariate polynomial coprime was studied, where multivariate polynomial is in polynomial rings over unique factorization domain. From the classical definition of resulatants and combining the property proposed, we obtained the necessary and sufficient condition to judge whether multivariate polynomials are coprime polynomials or not, and whether there is a common factor of positive degree in these polynomials or not.
Key words:resultants; coprime polynomials; common factor; polynomial ring
结式理论是交换代数的重要组成部分,也是联系矩阵分解与Groeber理论的一座桥梁. 结式的概念最初是Sylvester在上世纪提出的, 从那以后,许多数学工作者,例如,Dixon,Kapur,Saxena 和Chtcherba等人引入不同的矩阵形式对它的性质及应用进行了研究[1-6],其结论已被广泛应用于消去理论、齐次线性方程组是否有解的判定、代数几何中二次曲线是否有交点的判定、图论和组合数学等诸多领域[7-12].
令K是任一域,我们知道,K[x]上的任意两个一元多项式是否互素可以用他们的结式来进行判定.由此,我们自然想到,任意多元多项式环R[x1,…,xn](R是唯一分解整环)上的m个n元多项式的互素性能否用结式来判断?本文从结式的经典定义出发,结合推广的结式性质,对上面问题进行了探讨.
首先给出本文常用到的符号.
参考文献
[1] WILLIAM C B. Matrices over commutative rings [M]. New York:Marcel Dekker, 1993:62-98.
[2] BUSE L, ELKADI M, MOURRAIN B. Generalized resultants over unirational algebraic varieties[J].J Symbolic Comput, 2000, 29: 515-526.
[3] CHTCHERBA A D, KAPUR D.Constructing sylvestertype resultant matrices using the dixon formulation[J]. J Symbolic Comput, 2004, 38:777-814.
[4] CHTCHERBA A D, KAPUR D. Extracting sparse resultant matrices from the Dixon resultant formulation[C]//Proc of 7th Rhine Workshop, RCWA 00. 2000:167-182.
[5] CHTCHERBA A D, KAPUR D. Exact resultants for cornercut unmixed multivariate polynomial systems using the Dixon formulation[J]. J Symbolic Comput,2003, 36 (3/4):289-315.
[6] STURMFELS B, ZELEVINSKI A. Multigraded resultants of sylvester type[J]. J Algebra, 1994, 163: 115-127.
[7] DICKENSTEIN A, EMIRIS I Z. Multihomogeneous resultant formulae by means of complexes[J]. J Symbolic Comput, 2003, 36 (3/4):317-342 .
[8] EMIRIS I Z, CANNY J F. Efficient incremental algorithms for the sparse resultant and the mixed volume[J]. J Symbolic Comput, 1995, 20 (2):117-149.
[9] EMIRIS I Z, MOURRAIN B. Matrices in elimination theory[J]. J Symbolic Comput, 1999, 28 (1/2): 3-43.
[10]KAPUR D, SAXENA T, YANG L. Algebraic and geometric reasoning using the Dixon resultants[C]//ACM ISSAC 94. Oxford: England, 1994:99-107.
[11]PEDERSEN P, STURMFELS B. Product formulas for resultants and chow forms[J]. Math Z, 1993, 214: 377-396.
[12]SAXENA T. Efficient variable elimination using resultants[D].Albany, NY: Department of Computer Science, State University of New York, 1997.