王晶苑,张心昱,温学发,王绍强,王辉民
(中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101)
全球氮沉降持续增加(可能从现在的1.5 kgN·hm-2·a-1增加到4.2 kgN·hm-2·a-1)[1],其对森林土壤碳汇的影响依然充满争议,其影响机制一直是陆地生态系统和全球变化研究的科学前沿。例如:氮沉降加速了南美热带雨林土壤碳释放[2],但是增加了欧洲森林[3]和北半球温带森林[4]土壤碳吸收,也可能是促进我国南方成熟森林土壤碳吸收的原因[5]。土壤有机质和凋落物的分解过程是决定森林土壤碳汇的核心关键过程[7]。目前,人类活动产生并排放到大气中的活性氮已由1860年的15 TgN/a增加到2000年的165 TgN/a,超过了陆地自然生态系统的最大估计固氮量130 TgN/a[16],其中70%通过干湿沉降到达地表[17]。大气氮素沉降主要包括湿沉降和干沉降[18]。硝态氮与铵态氮是氮沉降的两种主要形态,其中铵态氮占总沉降通量的60%以上。据预测,全球氮沉降速率到2050年将加倍,并有相当一部分地区超过50 kgN·hm-2·a-1[19]。目前我国已经成为欧洲、北美之后的第三大氮沉降区(12.9kgN·hm-2·a-1),氮沉降变化范围为1.0—74.3 kgN·hm-2·a-1,其中东南区域的氮沉降水平最高,高达35.6 kgN·hm-2·a-1,约每年增加0.34 kgN·hm-2·a-1,由东南向西北呈递减趋势,全国形成东南、四川盆地、长江中下游平原等高氮沉降中心[20]。
氮沉降不但改变土壤C∶N∶P化学计量比[10-11],而且会降低土壤pH[12],并加速土壤磷循环[8]。全球已发表的氮添加实验的综合分析表明,几乎所有生态系统中都存在由于氮素添加而导致的磷限制[9],进而影响土壤有机质和凋落物的分解过程。氮沉降持续增加背景下土壤微生物的生物量、组成与酶活性的改变是调控土壤有机质和凋落物分解的核心机制[13-14]。氮、磷添加控制试验是调控土壤C∶N∶P生态化学计量比的有效手段[15]。2011年New Phytologist杂志组织“全球变化下陆地生态系统化学计量比的适应性(Stoichiometric flexibility in terrestrial ecosystems under global change)”专题学术研讨会,指出氮沉降持续增加背景下土壤C∶N∶P化学计量比和pH环境等的改变对土壤有机质和凋落物分解的影响及其可能的土壤微生物学机制尚未清楚,已经成为陆地生态系统与全球变化研究的新生长点和科学研究前沿。
施氮实验证明氮添加能促使生物体产生更多的胞外磷酸酶,导致土壤有机质释放更多的磷酸盐[21];在高氮沉降的区域也产生类似的磷循环情景[22]。然而,氮沉降的持续增加已经促使生态系统由氮限制转变为磷限制[23]。但是磷限制对生态系统碳固定的影响可能被远远低估[24]。通常认为热带森林由于受磷限制而导致其氮沉降效应没有其它生态系统效果明显[23]。全球海洋与非农业陆地生态系统磷限制的情况正在日益加强[11]。随着大气CO2浓度和氮沉降增加,全球森林生长与碳库并没有显著增加或降低[25],这可能由于磷限制掩盖了CO2浓度和氮沉降增加的潜在效应。随着氮沉降的持续增加,磷限制性会逐渐增强[11]。人类活动导致其它元素(特别是氮)的大量增加是陆地生态系统存在磷限制的重要原因[9,23]。
生态化学计量学主要研究生态过程中化学元素的比例关系,目前主要集中于碳、氮和磷元素的计量关系[26-27]。生态系统碳-氮-磷平衡的标志之一就是土壤微生物和植物需求之间利用土壤为平台,通过动态交换达到并维持相对平衡的碳、氮和磷元素生态化学计量比[28]。生态系统中碳与关键养分元素(氮、磷)的生态化学计量比的差异能够调控和影响生态系统中碳循环过程[29]。土壤C∶N∶P化学计量比综合了生态系统功能的变异性,是反映土壤碳-氮-磷循环的主要指标,有助于理解生态过程对全球变化的响应,成为确定土壤碳-氮-磷平衡特征的重要参数[30]。植物叶片、根系、土壤有机质和凋落物中C∶N∶P化学计量比可以表征氮磷养分限制状况[31-32]。
土壤碳库的变化受到土壤微生物为维持自身碳/养分平衡需求的制约,这表明土壤碳排放过程是与外界氮磷输入相联系的[33]。土壤C∶N比直接控制硝化速率并对用于反硝化作用的硝酸根有间接影响,与土壤微生物对其的分解能力密切相关[34-35]。土壤有机质和凋落物C∶N比大于25时对微生物来说是氮限制性的,因此,氮首先被微生物固定利用而不是被硝化或反硝化。在全球尺度上,土壤C∶N比能解释99.2%的森林溪流DOC年通量变化[36]。土壤N∶P比是影响微生物群落多样性的重要因子,也是一个土壤养分限制的指示因子。在区域水平上,氮或磷限制条件下,土壤N∶P比会影响植物生产力与组成,同时会影响土壤微生物的组成与活性[37-38],表明土壤和土壤微生物C∶N∶P化学计量比与土壤有机质和凋落物分解密切相关[39-40]。土壤微生物C∶N、C∶P比可以作为相对于氮和磷的碳利用效率指标,而C∶P比也可作为衡量土壤有机物质矿化释放磷的一种指标[41]。
在全球尺度上,土壤中碳-氮-磷含量具有显著的正相关关系,但并不是线性关系,因为磷的增加量通常小于碳氮[42]。全球及中国土壤的 C∶N∶P 化学计量比分别为186∶13∶1 和60∶5∶1[42-43]。无论土壤中碳氮含量如何变化巨大,低磷含量总是导致高的C∶P和N∶P化学计量比,因此土壤C∶N∶P化学计量比的大小主要是受磷含量控制[43]。
由于人类活动对自然生态系统输入物质的C∶N∶P化学计量比的改变,必将对自然生态系统植被、土壤与土壤微生物的C∶N∶P化学计量比产生影响[44-45]。研究表明,自然过程中全球C∶N∶P化学计量比约为20333∶43∶1,人类活动产生的 C∶N∶P 化学计量比约为667∶12∶1[46]。例如,氮添加会导致植物叶片中氮含量增加,进而降低了叶片C∶N比[47-48]。胞外酶通常能够显示土壤微生物的养分需求,在养分不受限制的情况下其C∶N∶P生态化学计量比是1∶1∶1[30]。由于养分可利用性与土壤类型相关,在磷限制的土壤中其通常显示更高的C∶P比[30]。随着土壤深度的变化,土壤磷的降低速率要低于土壤碳氮[43],因此土壤C∶P比随土壤深度的下降速度要高于C∶N比。随着氮沉降的增加,一些研究已经观测到土壤N∶P比的增加[10]。全球而言,人类活动对生物圈投入的N∶P比为22.8—44.6∶1,比大多数陆地植物最优生长条件下土壤 N∶P比大了5% —100%[46]。
氮沉降增加了土壤有机质和凋落物分解过程中的氮含量,改变了土壤有机质和凋落物的C∶N∶P化学计量比并降低土壤pH[49-50]。随着氮沉降的持续增加,土壤pH值也随之下降,这也降低了土壤的阳离子交换量,改变了土壤中盐基阳离子数量与种类[51]。Matson等证明大多数进入热带生态系统的氮流失到水体或大气,导致硝化速率增加,氮损失导致盐基阳离子损失并降低土壤pH,这会反过来降低热带森林的碳固定能力[52]。
氮沉降最直接的效应是改变土壤微生物分解底物的质量(C∶N∶P化学计量比)、数量以及pH环境等,进而影响土壤微生物生物量、组成和酶活性,从而促进或限制土壤有机质和凋落物等分解速率。温带和北方林明显受到可利用氮的限制[19,53-54],而热带和亚热带森林处于有效氮富集状态,而存在磷限制[19,55]。Neff等研究表明,氮添加显著加快了较轻的土壤碳分解,而使得较重的土壤碳化合物更为稳定[56]。同时,氮沉降对土壤有机物质和凋落物分解的影响因分解阶段不同而表现出差异:和进入新鲜的、刚脱落的凋落物中会促进纤维素和可溶物质的初期分解,而相同化合物进入腐殖质(分解结束阶段)会显著抑制其活性[57]。莫江明等发现在分解初期添加氮促进马尾松林凋落物的分解,而对荷木凋落物分解无显著影响,对季风常绿阔叶林凋落物分解的影响随树种不同而异,总体上氮添加对凋落物分解是抑制作用大于促进作用,并认为少量土壤可用性氮增加可以提高凋落物分解速率,但过高则抑制凋落物分解[58]。Cao等在南亚热带的马占相思和桉树人工林的氮磷添加试验则表明氮磷添加均促进了马占相思林的土壤呼吸,但是降低了桉树林的土壤呼吸[59]。Zhang等[60]在会同地区的杉木凋落物与土壤加氮试验表明,杉木土壤碳稳定依赖于凋落物和氮的输入。
土壤有机质和凋落物的氮磷含量会影响土壤微生物对土壤有机质和凋落物的分解:当氮含量低时,土壤微生物会降低其单位氮的碳利用效率。叶片在凋落前有显著的氮磷养分回收,但根没有或较少,因此死根中的氮磷养分含量远高于叶凋落物。土壤有机质和凋落物的C∶N∶P化学计量比存在明显差异,而土壤有机质库具有较高的氮磷养分含量,供应氮磷养分的速率高[61-62]。土壤有机质和凋落物的碳氮磷化学计量比是其分解的重要决定因子,然而元素的化学计量比对其分解过程中微生物的氮磷周转影响现在研究不足。例如山毛榉凋落物放在培养3个月及6个月后分解者氮磷循环发生改变。总蛋白分解、氮矿化(氨化)、硝化速率与凋落物的C∶N比存在负相关。磷的矿化速率与凋落物的C∶P比存在负相关,凋落物C∶N比与无机氮循环的负相关关系比其与总蛋白分解的负相关关系更强,显示底物的化学计量比对细胞内过程的效应要比胞外酶催化过程的效应要强。胞外蛋白分解主要受底物的可利用性限制而较少受到蛋白酶数量的限制。氮库与磷库是密切正相关而且其预期产量与消费过程指出其控制微生物、凋落物的氮磷循环。凋落物C∶N比与磷酸酶活性的负相关关系显示微生物倾向于分配足够的碳和养分来生产胞外酶来增加养分的供应。资源的碳氮磷化学计量比对微生物的分解凋落物过程的氮磷循环具有很强的效应,氮磷的矿化与保持凋落物微生物群落的细胞内稳性具有较强的耦合作用[63]。
氮输入与变暖会通过改变微生物活性和分解过程而改变土壤碳储量。施肥可以增加大多数土壤碳含量,降低异养呼吸而减少碳损失。但是土壤碳库的增加在不同碳库并不一致,活性的土壤碳库在施肥的情况下降解非常快,但是缓效的碳库却延长了其周转时间。土壤碳库对氮输入的变化与两类微生物胞外酶相关。小的活跃碳库会增加水解酶活性,而周转时间长的缓慢碳库会降低氧化酶活性,水解酶在降解施肥土壤中更复杂的碳组分。增温会整体上增加土壤呼吸,氮输入会显著增加缓效碳库的温度敏感性。氮沉降有增加热带森林土壤碳库的趋势,但是增加的碳库是否能长期稳定可能取决于将来的温度变化[64]。
土壤微生物组成与酶活性是反应土壤有机质和凋落物分解过程的重要指标[6,64,66]。土壤中生活着大量的微生物(每克土壤可含109细菌、107放线菌和106真菌),它们是土壤生物地球化学循环的驱动者[29,67-68]。目前,土壤微生物生物量碳氮磷的测定方法是熏蒸培养法[69-70]。土壤微生物细菌、真菌和放线菌组成与活性主要依靠磷脂脂肪酸(phospholipid fatty acid,PLFA)分析技术[71-74]。目前国际上研究较多的土壤酶活性是土壤胞外酶活性,多采用微孔板法分析土壤的酶活性[75],而我国酶活性分析多采用传统的培养、比色法[70,76]。值得注意的是,基于DNA/RNA等分子生物学方法为土壤微生物生态学研究提供了强有力的手段,如RTPCR、PCR-DGGE,第二代基因组测序技术[77]。
在研究氮、磷添加对土壤微生物组成和酶活性影响时,植被类型、土壤有机质含量等特征不容忽视。不同土地利用类型土壤微生物与酶活性的差别与土壤有机质含量密切相关,在高有机质含量的土壤中土壤酶活性较高,反之亦然[78];在不同土地利用类型中,土壤酶活性、真菌:细菌的比和土壤质地与土壤有机质化学组分密切相关[68]。在内蒙古呼伦贝尔草原研究也表明,资源可利用性(植物生物量、土壤含水量、土壤N∶P化学计量比)是决定土壤微生物功能多样性的主要因子[38]。Zechmeister-Boltenstern研究了欧洲12种森林植被类型和氮沉降水平下土壤微生物状况,结果表明植被类型对土壤微生物种群结构影响明显,仅当氮沉降水平较高(>30 kgN·hm-2·a-1)时,氮沉降的影响才掩盖了植被类型的效应[14]。
氮添加是影响微生物细菌、真菌和放线菌组成的重要因素[79-80]。在北美碳和氮含量低的土壤中,氮添加主要增加放线菌的生物量[81]。在北方硬阔林的土壤中,氮添加降低菌根真菌的生物量[13]。美国北部阔叶林12a氮沉降导致土壤微生物生物量和丛枝菌根真菌生物量降低24%—36%,并导致土壤真菌与细菌的比例降低了10%[13]。Treseder综合评价了82个田间施氮试验对土壤微生物的影响,结果表明微生物生物量平均降低约15%,且土壤CO2排放减少;长期的高施氮试验中细菌和真菌有降低的趋势[80]。以细菌为主的土壤中,氮素增加抑制了难分解有机质的降解[75]。瑞典北部北方森林环割和34a施氮试验研究表明,环割和施氮均导致土壤真菌生物量降低45%,说明氮沉降可能同环割处理相同,降低了对外生菌根真菌供碳量,而细菌生物量随自然梯度的pH增加而明显增加[79]。在低海拔的热带森林中,氮沉降导致革兰氏阴性细菌生物量增加,活性有机碳化学组分流失增加;而在高海拔的热带森林中,氮沉降导致真菌增加,降低了有利于土壤有机碳储存的化学组分[82]。对美国28种土壤进行1a室内增氮培养试验研究表明,增氮改变了土壤微生物群落组成,增加了放线菌和硬壁菌生物量,降低了酸杆菌和疣微菌生物量[81]。
氮沉降增加会加速土壤磷循环并导致磷限制,改变土壤C∶N∶P化学计量比和pH环境,这将导致土壤微生物组成与酶活性发生变化[8]。Cleveland[42]研究表明,不同于土壤C∶N∶P化学计量比在全球的一致性,土壤微生物C∶N∶P化学计量比随着植被类型变化有明显区别。例如森林土壤微生物C∶P、N∶P比明显高于草原土壤微生物C∶P、N∶P比,主要由于森林土壤微生物的磷含量低[42]。土壤N∶P比是影响微生物群落多样性的重要因子,也是一个土壤养分限制的指示因子。在氮或磷限制环境下,土壤N∶P比能够显示其对植物生产力与组成的改变来影响土壤微生物群落多样性。通过氮沉降、施肥、增温等产生的土壤C∶N∶P化学计量比的改变均可能影响土壤微生物的分布[83-84]。真菌的碳利用效率与C∶N、C∶P比有正相关关系,而细菌的碳利用效率和C∶N、C∶P比是负相关关系,而且这种关系在不同生物量条件下保持稳定。这显示真菌比细菌有更高的碳需求[80]。
磷的添加改变微生物生物量与组成,可以增加土壤有机质和凋落物分解[38,85]。例如鼎湖山森林3a施磷试验表明,亚热带老龄森林中施磷促进了土壤微生物生物量的增加,增加了土壤微生物中细菌和真菌的量,并增加了土壤的真菌与细菌的比[86]。在磷限制区域,细菌生长非常缓慢,并由于RNA浓度的降低导致其磷含量也降低[87-88]。
不同氮沉降处理对土壤酶的活性影响差异较大。氮沉降降低了凋落物表面酶活性效能,并且使酶的功能从催化氮素转化向催化磷素转化转变,并且从多酚氧化酶向多聚糖水解酶转变[67]。长期施氮对温带阔叶林地表凋落物酶活性的影响超过了对土壤酶活性的影响,施氮增加了凋落物和土壤中脲酶、酸性磷酸酶、糖苷酶活性;增加了凋落物中酚氧化酶的活性,但是降低了土壤中酚氧化酶的活性[75]。氮添加显著抑制矿质土壤中β-1,4-葡糖苷酶的活性,而且抑制了地表凋落物的酚氧化酶活性[89]。美国的28种土壤室内1a增氮培养试验研究表明,增加氮显著降低了葡萄糖苷酶、酸性磷酸酶、亮氨酸肽酶、过氧化物酶等土壤微生物的酶活性[81]。对于氮限制的3个温带森林,经过1a的施氮后土壤苯酚氧化酶、过氧化物酶有增加,也有降低的趋势,不同生态系统对酶活性具有不同响应特征[90]。Marklein和Houlton利用全球34个自然生态系统氮磷添加试验数据综合分析了氮、磷添加对土壤磷酸酶活性的影响,氮添加增加了土壤磷酸酶的活性,而磷添加抑制了土壤磷酸酶活性[8]。植物和土壤把过剩的氮素分配给磷酸酶,延迟氮沉降增加而导致磷限制。Sinsabaugh等综合全球40个生态系统的土壤酶活性数据研究表明,β-1,4-葡糖苷酶,β-1,4-N-乙酰葡糖胺酶和磷酸酶活性会随着土壤中有机质浓度的增加而增加,而亮氨酸氨肽酶的活性与土壤有机质浓度无明显关系[30]。不同酶在氮沉降影响下随时间的动态变化无统一规律,蔗糖酶波动较大,而脲酶和过氧化氢酶两者趋势较一致等。
土壤pH环境改变直接影响土壤微生物组成和酶活性变化[91]。在北美洲和南美洲洲际尺度区域调查研究表明土壤细菌种群多样性和丰富度主要受土壤pH值影响,在酸性土壤中微生物多样性最低,在中性土壤中微生物多样性最高[92]。在全球尺度利用40个生态系统调查结果,发现β-1,4-葡萄糖苷酶、纤维素水解酶、β-1,4-N-乙酰葡糖胺酶、磷酸酶活性会随着土壤中有机质含量的增加而增加,而亮氨酸氨肽酶、苯酚氧化酶、过氧化物酶的活性与土壤有机质浓度无明显关系,但是这7种酶活性都与土壤pH显著相关,而与年均温或年均降雨量相关性不明显[30]。
我国为世界上第三大氮沉降区,氮沉降持续增加而导致了森林生态系统磷循环加速而导致磷限制。氮沉降改变森林土壤有机质和凋落物的C∶N∶P化学计量比和降低土壤pH值,而且改变土壤微生物生物量碳氮磷、细菌、真菌和放线菌的组成以及影响碳氮磷分解的关键酶活性。氮沉降持续增加背景下土壤C∶N∶P化学计量比和pH环境等的改变对土壤有机质和凋落物分解的影响及其可能的土壤微生物学机制尚未清楚。以往研究多独自开展生态化学计量学或土壤微生物生态学研究,迫切需要开展生态化学计量学和土壤微生物生态学交叉的综合研究,促进全球变化背景下我国陆地生态系统地下生态学的研究。
氮沉降对土壤有机质和凋落物化学计量比改变的作用机理存在着多种解释,但目前仍无普遍接受的结论[93-94]。现有研究多数以针叶林为研究对象在氮沉降严重的欧洲和北美森林中进行,结果带有局限性。热带和亚热带地区的森林类型比较复杂,氮循环在热带地区与温带地区之间存在差别,磷是热带亚热带地区重要的限制因子,但是在温带的限制效应并不明显。如何利用生态化学计量特征来合理比较不同区域森林土壤有机质和凋落物的分解特征及其对氮沉降的响应?土壤有机质和凋落物的化学计量比对细胞内过程的效应和胞外酶催化的过程的效应是否与林型有关[63],其氮磷的矿化与保持微生物群落的细胞内稳性的耦合如何协调[64]?氮输入与土壤响应参数之间的关系在森林表层与矿质土壤氮矿化在空间的差异大,而且森林表层土壤碳氮比和矿质土壤碳储量存在十来倍的差异。空间格局上的差异可能来源于是否仅仅是土壤有机质分解与稳定的差异,以及活性碳库与惰性碳库的不同响应均值得深入研究[65]。
资源的化学计量比对消费者的活性和数量均是重要的控制因子。凋落物的化学成分是分解者的主要食物来源,也是分解者活性的主要驱动因子。理论预测资源生态化学计量比对消费者的数量有高度控制,保持严格的内稳性,由于需要消耗养分来保持消费者身体组织的平衡。分解者对养分的获取通常与资源化学计量比的不平衡有关。通过对纯林凋落物的研究表明:土壤与凋落物的化学计量比之间没有联系,微生物活性与土壤化学计量比有关[95],但是作为分解者的微生物能否在分解过程中保持内稳性尚没有结论。基于DNA/RNA等分子生物学方法为土壤微生物生态学研究提供了强有力的手段,将促进氮沉降对森林土壤有机质和凋落物分解的微生物学机制研究。如RT-PCR技术可以定量研究氮沉降对土壤氮循环的关键基因(固氮基因nifH、氨氧化基因amoA,氮还原基因nirS、nirK、氧化亚氮还原基因nosZ)的影响[96]。PCR-DGGE技术作为一种高通量的测度微生物群落结构和多样性的方法,可以用来探讨不同的环境因子与微生物群落结构和多样性的关系。常以基于 rDNA指纹图谱的可操作分类单元(OTU)的数目表征物种丰富度[97]。Lekberg[98]在《Nature》撰文指出454公司推出的基于焦磷酸测序法的超高通量基因组测序系统(Genome Sequencer 20 System),为微生物的多样性和丰度等群落结构分析提供了丰富的数据支持。结合13C核磁共振技术,可以对不同组分有机碳的变化机理进行深入研究,结合根窗等原位观测技术,可以对原位土壤酶活性分布的热点区域进行根的分布特征间关系进行深入研究[82]。
[1] Lamarque J F,Kiehl J T,Brasseur G P,Butler T,Cameron-Smith P,Collins W D,Collins W J,Granier C,Hauglustaine D,Hess P G,Holland E A,Horowitz L,Lawrence M G,McKenna D,Merilees P,Prather M J,Rasch P J,Rotman D,Shindell D,Thornton P.Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:Analysis of nitrogen deposition.Journal of Geophysical Research,2005,110(D19):D19303.
[2] Cleveland C C,Townsend A R.Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences,2006,103(27):10316-10321.
[3] De Vries W I M,Reinds G J,Gundersen P E R,Sterba H.The impact of nitrogen deposition on carbon sequestration in European forests and forest soils.Global Change Biology,2006,12(7):1151-1173.
[4] Nadelhoffer K J,Emmett B A,Gundersen P,Kjonaas O J,Koopmans C J,Schleppi P,Tietema A,Wright R F.Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests.Nature,1999,398(6723):145-148.
[5] Zhou G Y,Liu S G,Li Z,Zhang D Q,Tang X L,Zhou C Y,Yan J H,Mo J M.Old-growth forests can accumulate carbon in soils.Science,2006,314(5804):1417-1417.
[6] Wardle D A,Bardgett R D,Klironomos J N,Setälä H,van der Putten W H,Wall D H.Ecological Linkages Between Aboveground and Belowground Biota.Science,2004,304(5677):1629-1633.
[7] Dijkstra F A,Cheng W X.Interactions between soil and tree roots accelerate long-term soil carbon decomposition.Ecology Letters,2007,10(11):1046-1053.
[8] Marklein A R,Houlton B Z.Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.New Phytologist,2012,193(3):696-704.
[9] Elser J J,Bracken M E S,Cleland E E,Gruner D S,Harpole W S,Hillebrand H,Ngai J T,Seabloom E W,Shurin J B,Smith J E.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems.Ecology Letters,2007,10(12):1135-1142.
[10] Elser J J,Andersen T,Baron J S,Bergstrom A K,Jansson M,Kyle M,Nydick K R,Steger L,Hessen D O.Shifts in Lake N∶P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition.Science,2009,326(5954):835-837.
[11] Peñuelas J,Sardans J,Rivas-ubach A,Janssens I A.The human-induced imbalance between C,N and P in Earth's life system.Global Change Biology,2012,18(1):3-6.
[12] Turner M M,Henry H A L.Interactive effects of warming and increased nitrogen deposition on 15N tracer retention in a temperate old field:seasonal trends.Global Change Biology,2009,15(12):2885-2893.
[13] van Diepen L,Lilleskov E,Pregitzer K,Miller R.Simulated Nitrogen Deposition Causes a Decline of Intra-and Extraradical Abundance of Arbuscular Mycorrhizal Fungi and Changes in Microbial Community Structure in Northern Hardwood Forests.Ecosystems,2010,13(5):683-695.
[14] Zechmeister-Boltenstern S,Michel K,Pfeffer M.Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition.Plant and Soil,2011,343(1):37-50.
[15] Gnankambary Z,Stedt U,Nyberg G,Hien V,Malmer A.Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso:The effects of tree canopy and fertilization.Soil Biology& Biochemistry,2008,40(2):350-359.
[16] Galloway J N.The global nitrogen cycle:changes and consequences.Environmental Pollution,1998,102(1,Supplement 1):15-24.
[17] Galloway J N,Dentener F J,Capone D G,Boyer E W,Howarth R W,Seitzinger S P,Asner G P,Cleveland C C,Green P A,Holland E A,Karl D M,Michaels A F,Porter J H,Townsend A R,Vorosmarty C J.Nitrogen cycles:past,present,and future.Biogeochemistry,2004,70(2):153-226.
[18] Sirois A,Barrie L A.An estimate of the importance of dry deposition as a pathway of acidic substances from the atmosphere to the biosphere in eastern Canada.Tellus B,1988,40B(1):59-80.
[19] Galloway J N,Townsend A R,Erisman J W,Bekunda M,Cai Z C,Freney J R,Martinelli L A,Seitzinger S P,Sutton M A.Transformation of the Nitrogen Cycle:Recent Trends,Questions,and Potential Solutions.Science,2008,320(5878):889-892.
[20] Lü C,Tian H.Spatial and temporal patterns of nitrogen deposition in China:Synthesis of observational data.Journal of Geophysical Research,2007,112(D22):D22S05.
[21] Treseder K K,Vitousek P M.Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests.Ecology,2001,82(4):946-954.
[22] Gress S E,Nichols T D,Northcraft C C,Peterjohn W T.Nutrient limitation in soils exhibiting differing nitrogen availabilities:What lies beyond nitrogen saturation?Ecology,2007,88(1):119-130.
[23] Vitousek P M,Porder S,Houlton B Z,Chadwick O A.Terrestrial phosphorus limitation:mechanisms,implications,and nitrogen-phosphorus interactions.Ecological Applications,2010,20(1):5-15.
[24] Peng Y,Thomas S.Influence of Non-nitrogenous Soil Amendments on Soil CO<sub>2</sub>Efflux and Fine Root Production in an NSaturated Northern Hardwood Forest.Ecosystems,2010,13(8):1145-1156.
[25] Peñuelas J,Sardans J,Llusia J,Owen S M,Niinemets Ü.Lower P contents and more widespread terpene presence in old Bornean than in young Hawaiian tropical plant species guilds.Ecosphere,2011,2(4):art45.
[26] Sterner R W,Elser J J,Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere.2002,Princeton:Princeton University Press.
[27] He J S,Han X G.Ecological stoichiometry:Searching for unifying principles from individuals to ecosystems.Chinese Journal of Plant Ecology,2010,34(01):2-6.
[28] Hessen D O,Agren G I,Anderson T R,Elser J J,De Ruiter P C.Carbon sequestration in ecosystems:The role of stoichiometry.Ecology,2004,85(5):1179-1192.
[29] Manzoni S,Trofymow J A,Jackson R B,Porporato A.Stoichiometric controls on carbon,nitrogen,and phosphorus dynamics in decomposing litter.Ecological Monographs,2010,80(1):89-106.
[30] Sinsabaugh R L,Lauber C L,Weintraub M N,Ahmed B,Allison S D,Crenshaw C,Contosta A R,Cusack D,Frey S,Gallo M E,Gartner T B,Hobbie S E,Holland K,Keeler B L,Powers J S,Stursova M,Takacs-Vesbach C,Waldrop M P,Wallenstein M D,Zak D R,Zeglin L H.Stoichiometry of soil enzyme activity at global scale.Ecology Letters,2008,11(11):1252-1264.
[31] Wardle D A,Walker L R,Bardgett R D.Ecosystem properties and forest decline in contrasting long-term chronosequences.Science,2004,305(5683):509-513.
[32] Wassen M J,Venterink H O,Lapshina E D,Tanneberger F.Endangered plants persist under phosphorus limitation.Nature,2005,437(7058):547-550.
[33] Herbert D A,Williams M,Rastetter E B.A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment.Biogeochemistry,2003,65(1):121-150.
[34] Gundersen P,Callesen I,de Vries W.Nitrate leaching in forest ecosystems is related to forest floor C/N ratios.Environmental Pollution,1998,102:403-407.
[35] Chapin I F S,Matson P A,Vitousek P M,Principles of terrestrial ecosystem ecology.2nd ed.New York:Springer,2011:529.
[36] Aitkenhead J A,McDowell W H.Soil C∶N ratio as a predictor of annual riverine DOC flux at local and global scales.Global Biogeochemical Cycles,2000,14(1):127-138.
[37] Mulder C,Elser J J.Soil acidity,ecological stoichiometry and allometric scaling in grassland food webs.Global Change Biology,2009,15(11):2730-2738.
[38] Liu Z F,Fu B J,Zheng X X,Liu G H.Plant biomass,soil water content and soil N∶P ratio regulating soil microbial functional diversity in a temperate steppe:A regional scale study.Soil Biology& Biochemistry,2010,42(3):445-450.
[39] Werth M,Kuzyakov Y.Root-derived carbon in soil respiration and microbial biomass determined by C-14 and C-13.Soil Biology& Biochemistry,2008,40(3):625-637.
[40] Xu C G,Liang C,Wullschleger S,Wilson C,McDowell N.Importance of feedback loops between soil inorganic nitrogen and microbial communities in the heterotrophic soil respiration response to global warming.Nature Reviews Microbiology,2011,9(3):222-222.
[41] Peng P Q,Zhang W J,Tong C L,Qiu S J,Zhang W C.Soil C,N and P contents and their relationships with soil physical properties in wetlands of Dongting Lake floodplain.Chinese Journal of Applied Ecology,2005,16(10):1872-1878.
[42] Cleveland C C,Liptzin D.C∶N∶P stoichiometry in soil:is there a"Redfield ratio"for the microbial biomass?Biogeochemistry,2007,85(3):235-252.
[43] Tian H Q,Chen G S,Zhang C,Melillo J M,Hall C A S.Pattern and variation of C∶N∶P ratios in China's soils:a synthesis of observational data.Biogeochemistry,2010,98(1/3):139-151.
[44] Cherif M,Loreau M.Stoichiometric constraints on resource use,competitive interactions,and elemental cycling in microbial decomposers.American Naturalist,2007,169(6):709-724.
[45] Waite M,Sack L.Does global stoichiometric theory apply to bryophytes?Tests across an elevation x soil age ecosystem matrix on Mauna Loa,Hawaii.Journal of Ecology,2011,99(1):122-134.
[46] Falkowski P,Scholes R J,Boyle E,Canadell J,Canfield D,Elser J,Gruber N,Hibbard K,Hogberg P,Linder S,Mackenzie F T,Moore B,Pedersen T,Rosenthal Y,Seitzinger S,Smetacek V,Steffen W.The global carbon cycle:A test of our knowledge of earth as a system.Science,2000,290(5490):291-296.
[47] Bauer G A,Bazzaz F A,Minocha R,Long S,Magill A,Aber J,Berntson G M.Effects of chronic N additions on tissue chemistry,photosynthetic capacity,and carbon sequestration potential of a red pine(Pinus resinosa Ait.)stand in the NE United States.Forest Ecology and Management,2004,196(1):173-186.
[48] Gu D X,Chen S L,Huang Y Q.Effects of soil nitrogen and phosphonium on leaf nitrogen and phosphonium stoichiometric characteristics and chlorophyll content of Oligostachyum lubricum.Chinese Journal of Plant Ecology,2011,35(12):1219-1225.
[49] Kirkby C A,Kirkegaard J A,Richardson A E,Wade L J,Blanchard C,Batten G.Stable soil organic matter:A comparison of C∶N∶P∶S ratios in Australian and other world soils.Geoderma,2011,163(3/4):197-208.
[50] Sardans J,Rivas-Ubach A,Peñuelas J.The C∶N∶P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives.Perspectives in Plant Ecology,Evolution and Systematics,2012,14(1):33-47.
[51] Bowman W D,Cleveland C C,Halada L,Hresko J,Baron J S.Negative impact of nitrogen deposition on soil buffering capacity.Nature Geoscience,2008,1(11):767-770.
[52] Matson P A,McDowell W H,Townsend A R,Vitousek P M.The globalization of N deposition:ecosystem consequences in tropical environments.Biogeochemistry,1999,46(1/3):67-83.
[53] LeBauer D S,Treseder K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology,2008,89(2):371-379.
[54] Li S G,Tsujimura M,Sugimoto A,Davaa G,Oyunbaatar D,Sugita M.Temporal variation of delta C-13 of larch leaves from a montane boreal forest in Mongolia.Trees-Structure and Function,2007,21(4):479-490.
[55] Fang H,Yu G,Cheng S,Zhu T,Zheng J,Mo J,Yan J,Luo Y.Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads.Biogeochemistry,2011,102(1):251-263.
[56] Neff J C,Townsend A R,Gleixner G,Lehman S J,Turnbull J,Bowman W D.Variable Effects of Nitrogen Additions on the Stability and Turnover of Soil Carbon.Nature,2002,419:915-917.
[57] Berg B,Matzner E.Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems.Environmental Reviews,1997,5(1):1-25.
[58] Mo J M,Xue J H,Fang Y T.Litter decom position and its respon ses to simulated N deposition for the major plan ts of Dinghushan forests in subtropical China.Acta Ecologica Sinica,2004(07):1413-1420.
[59] Cao Y S,Lin Y B,Rao X Q,Fu S L.Effects of artificial nitrogen and phosphorus depositions on soil respiration in two plantations in southern china.Journal of Tropical Forest Science,2011,23(2):110-116.
[60] Zhang W,Wang S.Effects of NH+4and NO-3on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China.Soil Biology and Biochemistry,2012,47(0):116-122.
[61] Lindahl B D,Ihrmark K,Boberg J,Trumbore S E,Hogberg P,Stenlid J,Finlay R D.Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest.New Phytologist,2007,173(3):611-620.
[62] Tateno R,Takeda H.Nitrogen uptake and nitrogen use efficiency above and below ground along a topographic gradient of soil nitrogen availability.Oecologia,2010,163(3):793-804.
[63] Mooshammer M,Wanek W,Schnecker J,Wild B,Leitner S,Hofhansl F,Blöchl A,Hämmerle I,Frank A H,Fuchslueger L,Keiblinger K M,Zechmeister-Boltenstern S,Richter A.Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.Ecology,2011.
[64] Cusack D F,Torn M S,McDowell W H,Silver W L.The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils.Global Change Biology,2010,16(9):2555-2572.
[65] Nave L E,Vance E D,Swanston C W,Curtis P S.Impacts of elevated N inputs on north temperate forest soil C storage,C/N,and net N-mineralization.Geoderma,2009,153(1/2):231-240.
[66] Wang C K,Yang J Y.Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests.Global Change Biology,2007,13(1):123-131.
[67] Sinsabaugh R L,Carreiro M M,Repert D A.Allocation of extracellular enzymatic activity in relation to litter composition,N deposition,and mass loss.Biogeochemistry,2002,60(1):1-24.
[68] Grandy A S,Strickland M S,Lauber C L,Bradford M A,Fierer N.The influence of microbial communities,management,and soil texture on soil organic matter chemistry.Geoderma,2009,150(3/4):278-286.
[69] Nannipieri P,Ascher J,Ceccherini M T,Landi L,Pietramellara G,Renella G.Microbial diversity and soil functions.European Journal of Soil Science,2003,54(4):655-670.
[70] Wu J S,Lin Q M,Huang Q Y,Xiao H A.Measureing methods for soil microbial biomass and its application.Beijing:China Meteorological Press,2006:54-88.
[71] Yan H,Cai Z C,Zhong W H.PLFA Analysis and its applications in the study of soil microbial diversity.Acta Pedologica Sinica,2006,43(05):851-859.
[72] Wang S G,Hou Y L.Application of phospholipid fatty acid method in soil microbial analysis.Microbiology,2004,31(1):114-117.
[73] Olsson P A.Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil.Fems Microbiology Ecology,1999,29(4):303-310.
[74] Frostegård Å,Tunlid A,Bååth E.Use and misuse of PLFA measurements in soils.Soil Biology and Biochemistry,2011,43(8):1621-1625.
[75] Saiya-Cork K R,Sinsabaugh R L,Zak D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil.Soil Biology & Biochemistry,2002,34(9):1309-1315.
[76] Li Z G,Luo Y M,Teng Y.Soil and enviornmental microbial research methods.Beijing:Science Press,2008:300-350.
[77] Paul E A,Soil Microbiology Ecology and Biochemistry.2007:Academic Press.
[78] Wallenius K,Rita H,Mikkonen A,Lappi K,Lindström K,Hartikainen H,Raateland A,Niemi R M.Effects of land use on the level,variation and spatial structure of soil enzyme activities and bacterial communities.Soil Biology and Biochemistry,2011,43(7):1464-1473.
[79] Hogberg M N,Hogberg P,Myrold D D.Is microbial community composition in boreal forest soils determined by pH,C-to-N ratio,the trees,or all three?.Oecologia,2007,150(4):590-601.
[80] Treseder K K.Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies.Ecology Letters,2008,11(10):1111-1120.
[81] Ramirez K S,Craine J M,Fierer N.Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes.Global Change Biology,2012:n/a-n/a.
[82] Cusack D F,Silver W L,Torn M S,Burton S D,Firestone M K.Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.Ecology,2011,92(3):621-632.
[83] Mulder C P H,Roy B A,Gusewell S.Herbivores and pathogens on Alnus viridis subsp fruticosa in Interior Alaska:effects of leaf,tree,and neighbour characteristics on damage levels.Botany-Botanique,2008,86(4):408-421.
[84] Hyvönen R,Persson T,Andersson S,Olsson B,Ågren G,Linder S.Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe.Biogeochemistry,2008,89(1):121-137.
[85] Zhao Y J,Liu B,Zhang W G,Hu C W,An S Q.Effects of plant and influent C∶N∶P ratio on microbial diversity in pilot-scale constructed wetlands.Ecological Engineering,2010,36(4):441-449.
[86] Liu L,Gundersen P,Zhang T,Mo J.Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China.Soil Biology and Biochemistry,2012,44(1):31-38.
[87] Elser J J,Kyle M,Makino W,Yoshida T,Urabe J.Ecological stoichiometry in the microbial food web:a test of the light:nutrient hypothesis.Aquatic Microbial Ecology,2003,31(1):49-65.
[88] Gillooly J F,Allen A P,West G B,Brown J H.The rate of DNA evolution:Effects of body size and temperature on the molecular clock.Proceedings of the National Academy of Sciences of the United States of America,2005,102(1):140-145.
[89] DeForest J L,Zak D R,Pregitzer K S,Burton A J.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest.Soil Biology & Biochemistry,2004,36(6):965-971.
[90] Waldrop M P,Zak D R,Sinsabaugh R L.Microbial community response to nitrogen deposition in northern forest ecosystems.Soil Biology and Biochemistry,2004,36(9):1443-1451.
[91] Meron D,Atias E,Iasur Kruh L,Elifantz H,Minz D,Fine M,Banin E.The impact of reduced pH on the microbial community of the coral Acropora eurystoma.ISME J,2011,5(1):51-60.
[92] Fierer N,Colman B P,Schimel J P,Jackson R B.Predicting the temperature dependence of microbial respiration in soil:A continental-scale analysis.Global Biogeochemical Cycles,2006,20(3).
[93] Manzoni S,Piñeiro G,Jackson R B,Jobbágy E G,Kim J H,Porporato A.Analytical models of soil and litter decomposition:Solutions for mass loss and time-dependent decay rates.Soil Biology and Biochemistry,2012,50(0):66-76.
[94] Hättenschwiler S,Coq S,Barantal S,Handa I T.Leaf traits and decomposition in tropical rainforests:revisiting some commonly held views and towards a new hypothesis.New Phytologist,2011,189(4):950-965.
[95] Marichal R,Mathieu J,Couteaux M M,Mora P,Roy J,Lavelle P.Earthworm and microbe response to litter and soils of tropical forest plantations with contrasting C∶N∶P stoichiometric ratios.Soil Biology& Biochemistry,2011,43(7):1528-1535.
[96] Shen J P,He J Z.Responses of microbes-mediated carbon and nitrogen cycles to global climate change.Acta Ecologica Sinica,2011,31(11):2957-2967.
[97] He J Z,Gen Y.Recent advances in soil microbial biogeography.Acta Ecologica Sinica,2008,28(11):5571-5582.
[98] Lekberg Y,Schnoor T,Kjøller R,Gibbons S M,Hansen L H,Al-Soud W A,Sørensen S J,Rosendahl S.454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities.Journal of Ecology,2012,100(1):151-160.
参考文献:
[27] 贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论.植物生态学报,2010,34(01):2-6.
[41] 彭佩钦,张文菊,童成立,仇少君,张文超.洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系.应用生态学报,2005,16(10):1872-1878.
[48] 顾大形,陈双林,黄玉清.土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响.植物生态学报,2011,35(12):1219-1225.
[58] 莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应.生态学报,2004(07):1413-1420.
[70] 吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006:54-88.
[71] 颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用.土壤学报,2006,43(05):851-859.
[72] 王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用.微生物学通报,2004,31(1):114-117.
[76] 李振高,骆永明,腾应.土壤与环境微生物研究法.北京:科学出版社.2008:300-350.
[96] 沈菊培,贺纪正.微生物介导的碳氮循环过程对全球气候变化的响应.生态学报,2011,31(11):2957-2967.
[97] 贺纪正,葛源.土壤微生物生物地理学研究进展.生态学报,2008,28(11):5571-5582.