第1类反调和平均和对数平均的最优凸组合界

2013-03-01 04:36潘学功孟祥菊
关键词:学生处计算机系正数

潘学功,孟祥菊

(1.河北软件职业技术学院 学生处,河北 保定 071000;2.保定学院 数学与计算机系,河北 保定 071000)

设p∈R,2个正数a与b的p阶幂平均定义为

近年来,幂平均及其不等式得到了广泛的研究[1-11].众所周知,对于固定的a,b>0且a≠b,Mp(a,b)于p∈R是连续和严格递增的.

如果定义

[1]LONG Boyong,CHU Yuming.Optimal power mean bounds for the weighted geometric mean of classical means[J].Journal of Inequalities and Applications,2010,ID 905679:6.

[2]XIA Weifeng,CHU Yuming,WANG Gendi.The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means[J].Abstract and Applied Analysis,2010,ID 604804:9.

[3]CHU Yuming,XIA Weifeng.Two sharp inequalities for power mean,geometric mean and harmonic mean[J].Journal of Inequalities and Applications,2009,ID 741923:6.

[4]WU Shanhe.Generalization and sharpness of the power means inequality and applications[J].Journal of Mathematical Analysis and Applications,2005,312(2):637-652.

[5]RICHARDS K C.Sharp power mean bounds for the Gaussian hypergeometric function[J].Journal of Mathematical A-nalysis and Applications,2005,308(1):303-313.

[6]WANG Wanlan,WEN Jiajin,SHI Huannan.Optimal inequalities involving power means[J].Acta Mathematica Sinica,2004,47 (6):1053-1062.

[7]HAASTO P A.Optimal inequalities between Seiffert's mean and power mean[J].Mathematical Inequalities and Applications,2004,7(1):47-53.

[8]TARNAVAS C D,TARNAVAS D D.An inequality for mixed power means[J].Mathematical Inequality and Applications,1999,2(2):175-181.

[9]BUKOR J,TOTH J,ZSILINSZKY L.The logarithinic mean and the power mean of positive numbers[J].Octogon Mathematical Magazine,1994,2(1):19-24.

[10]PECARIC J E.Generalization of the power means and their inequalities[J].Journal of Mathematical and Applications,1991,161(2):395-404.

[11]CHEN Ji,HU Bo.The identric mean and the power mean inequalities of Ky Fan type[J].Facta Universitatis,1989,4:15-18.

[12]ALZER H,JANOUS W.Solution of problem 8[J].Crux Mathematicorum,1987,13:173-178.

[13]BULLEN P S,MRITRINOVIC D S,VASIC P M.Means and their inequalities[J].Mathematics and Its Applications:East European eries,1998,31:459.

[14]MAO Qiji.Power mean,logarithmic mean and Heronian dual mean of two positive numbers[J].Journalof Suzhou College of Education,1999,16(1-2):82-85.

[15]CARLSON B C.The logarithmic mean[J].The American Mathematical Monthly,1972,79:615-618.

[16]LEACH E B,SHOLANDER M C.Extended mean valuesⅡ[J].Journal of Mathematical Analysis and Applications,1983,92(1):207-223.

[17]SANDOR J.A note on some inequalities for means[J].Archivder Mathematik,1991,56(5):471-473.

[18]SHI Mingyu,CHU Yuming,JIANG Yueping.Optimal Inequalities among various means of two arguments[J].Abstract and Applied Analysis,2009,ID 694394:10.

猜你喜欢
学生处计算机系正数
“正数和负数”检测题
提高高中德育教学有效性的实践策略
计算机系简介
那年并肩战斗时
又听岔了
童年趣事之不一起玩的理由
童年趣事之不一起玩的理由
英国教育部拟为学生处设置主席一职提升高教选拔性和竞争性
学好乘方四注意
正数与负数(小相声)