摘 要:通过历年来国内外无数震害事故分析,模拟实验的定量定性分析和国内外长期的设计和使用经验,进行分析、归纳、总结,最后得出的概念设计。而这些原则、规定与方法往往是基础性、整体性、全局性和关键性的。本文主要探讨概念设计在建筑结构设计中的应用。
关键词:概念设计 建筑结构 安全
中图分类号:TU3 文献标识码:A 文章编号:1672-3791(2012)11(a)-0041-01
建筑抗震设计一般包括三个层次的内容与要求:(1)概念设计是根据人们在学习和实践中所建立的正确概念,运用人的思维和判断力,正确和全面地把握结构的整体性能,即根据对结构品性(承载能力、变形能力、耗能能力等)的正确把握,合理地确定结构的总体布置与细部构造。(2)抗震计算是对地震作用进行定量分析,确定工程结构及构件的地震效应,再将地震效应与其他荷载组合验算结构及构件的强度与变形。(3)抗震构造措施是指采用满足计算以外的措施,以保证结构整体性、加强局部薄弱环节等,保证抗震计算结果的有效性。
1 结构概念设计的意义
强调结构概念设计的重要性,旨在要求建筑师和结构工程师在建筑设计中应特别重视规范、规程中有关结构概念设计的各条规定,设计中不能陷入只凭计算的误区。若结构严重不规则、整体性差,则仅按目前的结构设计计算水平,难以保证结构的抗震、抗风性能,尤其是抗震性能。高层建筑设计尤其是在高层建筑抗震设计中,应当非常重视概念设计。这是由于高层建筑结构的复杂性,发生地震时地震动的不确定性,人们对地震时结构响应认识的局限性与模糊性,高层结构计算尤其是抗震分析计算的精确性,材料性能与施工安装时的变异性以及其它不可预测的因素,致使设计计算结果(尤其是经过实用简化后的计算结果)可能和实际相差较大,甚至有些作用效应至今尚无法定量计算出来。
2 结构概念设计的原则
2.1 优化选型原则
结构概念设计归根到底是确定主体结构体系及其联系。它要考虑两个方面,用比较方法进行优化选择:(1)优化结构体系。前提是掌握各类基本构件的特征(如与受力相关的几何特征,与变形相关的刚性特征等),根据环境、使用、建筑和荷载实况优化选择合用的基本构件,确定它们间的联系,形成基本结构单元和它的支承做法(如框架结构,筒体结构等);再将基本结构单元通过线型、平面、叠合、交叉等集合形式构成主要结构体系。(2)优化结构布置。在满足使用要求和建筑意向前提下优化布置楼屋盖水平系统、柱墙竖向支承系统和基础系统。这时除比较各种布置的承载能力、竖向和侧向变形、支承做法、地质条件等结构问题的合理性、优越性外,重要的原则是平立面宜规则、对称,具有良好的整体性,竖向剖面除规整外侧向刚度宜均匀变化,自下而上逐渐减小,避免突变。
2.2 空间作用原则
建筑物本来是一个空间结构。在结构概念设计时,考虑建筑物内各部分结构的空间作用,实际上是还原到它本来的结构面貌。当然,如果这时更能有意识地利用构成构件间的空间关系,往往还会给所设计的建筑结构带来更大刚度、减小内力、受力效能好等方面的优点。
2.3 合理受力原则
结构概念设计时,要经常运用力学原理来处理结构构件的一般受力分析问题。以下几个方面往往应给予注意:(1)从受力和变形看,均匀受力比集中受力好,多跨连续比单跨简支好,空间作用比平面作用好,刚性连接比铰接好,超静定的受力体系比静定的受力体系好,另外,传力简捷比传力曲折好,要避免不明确的受力状态。(2)从受力和变形的分析看,要尽可能利用结构的对称性、刚度的相对性、变形的连续性和协调性;既要分析各部分构件的直接受力状态,也要分析整体结构的宏观受力状态;要抓住主要的受力状况和它所发生的变形,忽略次要的受力状况和它的相应变形。
2.4 减轻自重原则
在使用道路的过程中,荷载车辆反复对道路作用,促使路面发生压缩弯曲,而且沥青混凝土路面,因为自身材料的粘弹特性不仅容易发生弹性形变,并且根据荷载作用时间长短发生滞后弹性变形以及不可塑性变形。在反复增加和减少荷载过程中,在不超过限定压力情况下,减小不可恢复变形,增加弹性变形,通过加强路面密实度而强化路面,如果单位压力过大,超过限度时就会产生不可恢复的巨大塑性变形,反复荷载作用下,路面的纵向形变积累,进而渐渐发生竖向带状凹槽,就是车辙。车辙会极大的影响车辆运行,使道路的破坏程度加快,并且会使道路的使用质量和服务水平受严重影响。所以要通过使用的措施进行维修,来确保车辆在道路上的正常运行。
3 概念设计在建筑结构设计中的应用——建筑抗震的概念设计
概念设计要考虑以下因素:场地条件和场地土的稳定性;抗震结构体系的选取、抗侧力构件的布置;建筑平、立面布置及外形尺寸的确定;非结构构件与主体结构的连接等。
3.1 场地和地基的选择
历史震害资料表明,建筑场地的地质、地形、地貌对建筑物震害有显著影响。因此,在抗震设计中,首先要注意场地的选择。地基和基础的设计宜符合下列要求:(1)同一结构单元的基础不宜设置在性质截然不同的地基上。(2)同一结构单元不宜部分采用天然地基部分采用桩基。(3)地基为软弱粘性土、液化土、新近填土或严重不均匀土时,应估计地震时地基不均匀沉降或其他不利影响,并采取相应的措施。
3.2 选择合理的建筑体型
建筑设计及其抗侧力结构的平面布置宜规则、对称,尽量使结构刚度中心与质量中心相一致,并应具有良好的整体性,以利于减轻结构的地震扭转效应及应力集中现象。建筑的立面和竖向剖面宜规则,结构侧向刚度宜变化均匀,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐递减,避免抗侧力结构的侧向刚度和承载力突变产生薄弱层,造成应力集中。按《建筑抗震设计规范》的要求进行水平地震作用计算和内力调整,并对薄弱部位采取有效的抗震措施。对体型复杂、平立面特别不规则的建筑结构,可按实际需要在适当部位设置防震缝,形成多个较规则的抗侧力结构单元。防震缝应根据抗震设防烈度、结构材料种类、结构类型、结构单元的高度和高差情况,留有足够的宽度,其两侧的上部结构应完全分开。
3.3 抗震结构体系的选择
基坑开挖后,就可以在基坑内进行基础的施工。我国改革开放后,国民经济持续高速增长,全国工程建设亦突飞猛进,高层建筑如雨后春笋般迅速发展,在高层建筑所受的荷载中,起控制作用的不是竖向荷载,而是水平荷载,也就是地震作用和风荷载,修建高层建筑必须保证其在水平荷载作用下的强度与稳定性,因此要求基础必须埋入地面一定深度,以满足嵌固要求。利用这一在地面以下的埋置深度,我们可建成地下室,用作蓄水池,配电房,车库等用途。建筑高度越高,其埋置深度也就越深,对基坑工程的要求也越高。
4 结语
结构设计是随着经济发展及人们对建筑物功能要求改变,又随着科技的进步而得以实现和解决。以上所提到的几个问题是设计人员在工程设计中较易出差的地方,对设计者来说要把提高设计质量作为终身奋斗的目标,为祖国贡献自己的力量。
参考文献
[1]郭海燕,戴素娟,王子辉.建筑结构抗震[M].机械工业出版社,2010.