胡国文
(湖北科技学院 核技术与化学生物学院,湖北 咸宁 437100)
离子交换膜辐射合成研究进展*
胡国文
(湖北科技学院 核技术与化学生物学院,湖北 咸宁 437100)
讲述了离子交换膜的种类和用途、离子交换膜的辐射接枝的发展状况,重点介绍了阳离子交换膜、阴离子交换膜及两性离子交换膜的进展,同时对离子交换膜的辐射接枝的工业化提出了展望.
阳离子交换膜;阴离子交换膜;两性离子交换膜;辐射接枝
离子交换膜是一种对溶液里的离子具有选择性透过性的含有离子基团的高分子材料.离子交换膜在分离科学和工程技术领域起着重要的作用,并促使化学、医药学、食物、燃料、纺织、汽车等工业的发展.随着离子交换膜应用领域的不断扩展,对膜功能多元化的需求也与日俱增,界面聚合、原位聚合和接枝共聚等技术被广泛应用于制备离子交换膜.与加引发剂进行化学接枝相比,辐射接枝具有以下独特的优势:可在室温条件下接枝、接枝链不含引发剂残片,因而较纯净、接枝率易于控制.
辐射源有γ射线和X射线、电子束、中子束和重离子束等.前两者为电磁辐射源,后三者为粒子辐射源.被辐照的物质吸收辐射能后产生次级电子与物质分子相互作用引发化学反应[1].聚合物受辐照后可产生交联和降解两种辐射效应,而在聚合物受辐照后引入单体或聚合物与单体一起辐照,则单体可在聚合物上形成接枝链,得到接枝共聚物.
辐射接枝的研究开始于20世纪50年代,是聚合物材料改性的重要方法之一.辐射接枝由于不需引发剂,反应条件温和而倍受人们青睐.研究者对接枝反应条件、聚合物基材的种类和厚度、单体的种类和浓度等对接枝反应动力学及聚合物结构性能的影响[2~4].每年发表上百篇论文及专利,这些研究成果在燃料电池[5]、锂电池[6]、钒液流电池[7]等领域得到了应用.
辐射接枝的手段有预辐照和共辐照两种.共辐照接枝就是将聚合物基材膜与单体一起辐照,在辐照时单体接枝到聚合物膜上[8,9].预辐照就是将聚合物基材膜在冷冻条件下单独进行辐照一定剂量后,放入接枝单体或其溶液中,研究在不同的温度下的接枝规律[10~12].与预辐照相比,共辐照工艺简单,不需用干冰冷冻,但是,在接枝的同时,将有很大一部分单体进行了均聚,单体浪费严重.
在膜基材上直接接枝单体,存在接枝链分布不均匀的问题.这一缺陷可以通过以下两种方法改进.
利用活性聚合技术可以很方便地控制聚合物的分子量及其结构.1956年,Szwarc等发现阴离子活性聚合,开创了活性聚合的里程碑.随后,原子转移聚合(ATRP)和可逆加成-断裂-链转移聚合(RAFT)等活性聚合体系相继被发现.将活性聚合引入到辐射接枝中,可使接枝链的长短及在基材膜上分布均匀.
Holmberg等人[13]采用辐射接枝技术与活性自由基聚合(TEMPO)相结合的方法在聚偏二氟乙烯(PVDF)膜上进行了苯乙烯(St)利用的可控辐射接枝,然后磺化得到了含有磺酸基的离子交换膜.翟茂林等[14]利用原子转移自由基聚合技术,在辐射条件下将一溴四氟乙烷全氟乙烯基醚和苯乙烯接枝到聚乙烯-四氟乙烯基材膜上,磺化后得到阳离子交换膜.这样得到的膜通过性能测试发现,接枝链在整个基材内分布均匀,从而在较低的接枝率下具有比较高的电导率.Yu等[15]用RAFT技术成功地将丙烯酸及N-异丙基丙烯酰胺接枝到聚丙烯多孔膜上,制备出对温度及pH值响应的接枝共聚物.
在聚合物基材膜上接枝,可能会遇到单体仅在基材膜表面接枝,而内部得不到接枝的情况,这样即使接枝率高,但电导率低.为了避免这一缺陷,可以先在粉体上接枝,然后采用溶液相转移法[16~18]、热致相转移法[19]等方法制备成接枝膜.但是,接枝率高到一定程度后,接枝共聚物转变为不溶不熔的高分子物质,难以将粉体制成膜.
离子交换膜有四种类型:(1)阳离子交换膜.(2)阴离子交换膜.它们连接在分子链上的基团分别是带负电荷的基团,如-SO3-和 -COO-,用带正电的基团,如,由于静电排斥作用,分别提高阳离子和阴离子的交换能力.(3)两性离子交换膜,分子链上同时带有正、负离子,具有阴、阳离子的交换能力.(4)双极膜.这是一种阴阳离子复合膜,即将预先制备好的阴、阳离子交换膜复合在某一基材上而制得.尽管双极膜不同于两性离子交换膜,但还是可以把它归纳至两性离子交换膜中.
在阳离子交换膜中,分子链上连接的基团一般为弱酸性的羧基和强酸性的磺酸基两种.直接接枝烯丙基单体如丙烯酸或甲基丙烯酸,或它们的混合物,可以制备羧酸基的阳离子交换膜.接枝丙烯酸缩水甘油酯或甲基丙烯酸缩水甘油酯类环氧类单体,然后将环氧基团以亚硫酸钠处理可转化为磺酸基的阳离子交换树脂[20,21],用磷酸处理则得磷酸基的阳离子交换树脂[22].
大多数强酸基阳离子交换膜是在聚合物上接枝苯乙烯,然后磺化来制备.Chen等人[23]首次报道了在聚乙烯(PE)膜上辐射接枝苯乙烯(St)以制备阳离子交换膜.其制备过程如图1所示.
图1 苯乙烯磺化法制备阳离子交换树脂
选用氯磺酸、磺酰氯或浓硫酸为磺化剂,以抗磺化的溶剂如二氯甲烷、四氯乙烷等稀释,可实现磺化过程.
接枝苯乙烯然后磺化制备的阳离子交换膜,由于其α-H易受氧化剂的攻击使其化学稳定性(耐氧化性)能差[24,25].为了提高膜的化学稳定性和耐久性,可以选择耐腐蚀性的含氟聚合物为基材,也可用对二乙烯基苯对接枝链进行交联[26,27],或者接枝 α,β,β - 三氟苯乙烯(TFS)[28]或 α - 甲基苯乙烯(AMS)[29~31].接枝对氯甲基苯乙烯(VBC),再经一系列化学反应,也可制备磺酸基阳离子交换膜,对位上氯甲基使膜的化学稳定性大大增强[32].其制备程序图如图书室所示.
图2 接枝VBC制备阳离子交换膜程序图
制备阴离子交换膜的方法有:(1)接枝含氨基的单体如甲基丙烯酸二甲胺基乙酯(DMAEMA),然后加盐酸质子化[33];(2)接枝乙烯基吡啶类单体,再以碘甲烷季胺化得阴离子交换膜[34];(3)接枝对氯甲基苯乙烯,然后以三甲胺季胺化得阴离子交换膜[35].阴离子交换膜上的阳离子基团与钒离子间存在Donnan排斥效应,具有很好的阻钒性能.
两性离子交换膜同时含有阴、阳离子交换基团,其所表现出来的性能主要由环境的离子浓度、温度及pH等决定.可以采用共辐射法将两种单体接枝到聚合物基材膜上,然后转换成阴、阳离子交换基团[36],也可以采用分步接枝法将两种单体先后辐射接枝到聚合物基膜上,再转换成阴、阳离子交换基团,制备两性离子交换膜[37].
胡国文等[7]采用共辐射接枝法在聚偏二氟乙烯上接枝AMS和DMAEMA,将AMS接枝链磺化,而将DMAEMA季胺化制备两性离子交换膜(图3).这样制得的膜化学稳定性好,阻钒性能好.
图3 两性离子交换膜制备程序图
离子交换膜可以应用于燃料电池、锂电池、钒液流电池、污水处理、海水脱盐等领域,特别是膜分离,具有简单、低能耗、环保等优势,引起人们的广泛关注.离子交换膜有共聚或共混法、辐射接枝法等制备方法.辐射接枝法操作简单,可在室温下进行,反应条件温和.但是,与高分子的辐射交联技术相比,辐射接枝技术产业化的规模还很小,还需要更为系统深入的研究.通过人们不懈地努力,辐射接枝产业化技术将会迅速发展,成为工业上制备离子交换膜的主要手段.
[1]翟茂林,伊敏,哈鸿飞.高分子材料辐射加工技术进展[M].北京:化学工业出版社,2004.
[2]S.A.Gu¨rsel,H.B.Youcef,A.Wokaun,et al.Influence of reaction parameters on grafting of styrene into poly(ethylene- alt- tetrafluoroethylene)films[J].Nuclear Instruments and Methods in Physics Research B,2007,(265):198~203.
[3]H.B.Youcef,S.A.Gu¨rsel,A.Wokaun,et al.The influence of crosslinker on the properties of radiationgrafted films and membranes based on ETFE[J].Journal of Membrane Science,2008,(311):208 ~215.
[4]R.Rohani,M.M.Nasef,H.Saidi,et al.Effect of reaction conditions on electron induced graft copolymerization of styrene onto poly(ethylene-co-tetrafluoroethylene)films:Kinetics study [J].Chemical Engineering Journal,2007,(132):27 ~35.
[5]J.H.Chen,M.Asano,Y.Maekawa,et al.Suitability of some fluoropolymers used as base films for preparation of polymer electrolyte fuel cell membranes[J].Journal of Membrane.Science,2006,(277):249 ~257.
[6]M.M.Nasef,R.R.Suppiah,K.Z.M.Dahlan.Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization[J].Solid State Ionics,2004,(171):243 ~249.
[7]G.W.Hu,Y.Wang,J.Ma,et al.A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting α - methylstyrene and N,N - dimethylaminoethyl methacrylate for vanadium redox flow battery application[J].Journal of Membrane Science,2012,(407 ~ 408):184~192.
[8]Y.C.Nho,J.Shin,G.Fei,et al.Simultaneous Radiation Grafting of Vinylbenzyl Chloride onto Poly(tetrafluoroethylene-co-hexafluoropropylene)Films[J].Journal of Applied Polymer Science,2009,(113):2 858 ~2 862.
[9]J.Y.Li,B.Deng,Z.C.Hou,et al.Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence[J].Radiation Physical& Chemistry,2008,(77):898~906.
[10]M.D.Guiver,T.A.Sherazi,S.Ahmad,et al.Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder and subsequent film fabrication for application as polymer electrolyte membranes:I.Influence of grafting conditions[J].Journal of Membrane Science,2008,(325):964 ~972.
[11]J.Y.Li,L.F.Li,B.Deng,et al.A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization[J].Journal of Membrane Science,2010,(346):113 ~120.
[12]M.L.Zhai,J.Y.Qiu,L.Zhao,et al.Pre - irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries[J].Journal of Power Sources,2008,(177):617~623.
[13]S.Holmberg,P.Holmlund,R.Nicolas,et al.Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization [J].Macromolecules,2004,37(26):9 909~9 915.
[14]M.L.Zhai,J.H.Chen,Shin Hasegawa,et al.Synthesis of fluorinated polymer electrolyte membranes by radiation grafting and atom transfer radical polymerization techniques[J].Polymer,2009,(50):1 159 ~1 165.
[15]H.Y.Yu,W.Li,J.Zhou,et al.Thermo- and pH -responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization[J].Journal of Membrane Science,2009,(343):82~89.
[16]T.A.Sherazi ,S.Ahmad,M.A.Kashmiri,et al.Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder and subsequent film fabrication for application as polymer electrolyte membranes:I.Influence of grafting conditions[J].Journal of Membrane Science,2008,(325):964 ~972.
[17]T.A.Sherazi ,S.Ahmad,M.A.Kashmiri,et al.Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder for polymer electrolyte fuel cell application II.Sulfonation and characterization[J].Journal of Membrane Science,2009,(333):59~67.
[18]L.F.Li,B.Deng,Y.L.Ji,et al.A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization[J].Journal of Membrane Science,2010,(346):113 ~120.
[19]林亚凯,唐元晖,马恒宇,等.热致相分离法制备聚偏氟乙烯微孔膜[J].膜科学与技术,2009,(29):36~39.
[20]S.Shkolink,D.Behar.Radiation-induced grafting of sulfonates on polyethylene[J].Journal of Applied Polymer Science,1982,(27):2 189 ~2 196.
[21]M.Kim,K.Saito.Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate onto porous hollow fiber membranes with different pore sizes[J].Radiation Physical Chemistry,2000,(57):167 ~172.
[22]S.H.Choi,J.Y.Han,R.J.Jeong,K.P.Lee.Desalination by electrodialysis with the ion-exchange membrane prepared by radiation - induced graft polymerization[J].Radiation Physical Chemistry,2001,(60):503 ~511.
[23]W.W.Chen,R.Mesrobian,A.Glines.Graft copolymers derived by ionizing radiation[J].Journal of Polymer Science,1957,(23):903 ~913.
[24] J.Brandrup,E.Immergut.Polymer Handbook[M].New York:Wiley-Interscience,1989.
[25]J.H.Chen,M.Asano,T.Yamaki,et al.Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes[J].Journal of Applied Polymer Science,2006,(100):4 565~4 574.
[26]J.H.Chen,M.Asano,T.Yamaki,et al.Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications[J].Journal of Power Sources,2006,(158):69~77.
[27]J.H.Chen,M.Asano,T.Yamaki,et al.Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films[J].Journal of Membrane Science,2006,(269):194 ~204.
[28]A.E.Steck,C .Stone,O.Savadogo,et al.New materials for fuel cell and modern battery systems II:Proceedings of the second international symposium on new materials for fuel cell and modern battery systems,Ecole Polytechnique Montreal[J].Montreal,1997,(792).
[29] J.Y.Li,F.Muto,T.Miura,et al.Improving the properties of the proton exchange membranes by introducing α-methylstyrene in the pre-irradiation induced graft polymerization [J].European Polymer Journal,2006,(42):1 222~1 228.
[30] L.Gubler,M.Slaski,F.Wallasch,et al.Radiation grafted fuel cell membranes based on co -grafting of α -methylstyrene and methacrylonitrile into a fluoropolymer base film [J].Journal of Membrane Science,2008,(339):68~77.
[31]J.J.Wooa,S.J.Seoa,S.H.Yun,et al.Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with α - methylstyrene and acrylonitrile [J].Journal of Membrane Science,2010,(363):80 ~86.
[32]T.N.Danks,R.C.T.Slade,J.R.Varcoe.Comparison of PVDF and FEP-based radiation grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs[J].Journal of Material Chemistry,2002,(12):3 371 ~3 375.
[33]J.Y.Qiu,M.Y.Li,J.F.Ni,et al.,Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery[J].Journal of Membrane Science,2007,(297):174 ~180.
[34]G..Kostov,S.Tumanova.Radiation - initiated graft copolymerization of 4-vinylpyridine onto polyethylene and polytetrafluoroethylene films and anion-exchange membranes therefrom [J].Journal of Applied Polymer Science,1997,(64):1 469 ~1 475.
[35]H.Liu,S.H.Yang,S.L.Wang,et al.Preparation and characterization of radiation-grafted poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether)membranes for alkaline anion-exchange membrane fuel cells[J].Journal of Membrane Science,2011,(369):277 ~283.
[36]E.A.Hegazy,H.El- Rehim,H.Shawky,et al.Investigations and characterization of radiation grafted copolymers for possible practical use in waste water treatment[J].Radiation Physical Chemistry,2000,(57):85 ~95.
[37]J.Y.Qiu,M.L.Zhai,J.H.Chen,et al.Performance of vanadium redox flow batteries of amphoteric ion exchange membrane synthesized by two-step grafting method[J].Journal of Membrane Science,2009,(342):215 ~220.
TQ325.4
A
1006-5342(2012)06-0011-04
2012-05-15