正则高阶微分系统带权第二特征值的上界

2012-09-04 08:45朱敏峰钱椿林
苏州市职业大学学报 2012年4期
关键词:上界正则苏州市

朱敏峰,钱椿林

(苏州市职业大学 基础部,江苏 苏州 215104)

正则高阶微分系统带权第二特征值的上界

朱敏峰,钱椿林

(苏州市职业大学 基础部,江苏 苏州 215104)

考虑正则高阶微分系统带权第二特征值的上界估计.利用试验函数、Rayleigh定理、分部积分和Schwarz 不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关.其结果在物理学和力学中有着广泛的应用,在常微分方程的研究中起着重要的作用.

正则高阶微分系统;特征值;特征向量;上界

[1]陈卫忠,钱椿林. 正则微分系统带权第二特征值的上界[J]. 常熟理工学院学报:自然科学版,2010 (10):38-42.

[2]HILE G N,YEN R Z. Inequalities for eigenvalue of the Biharmonic operator[J]. Pacific J.Math,1984 (1):115-133.

[3]PROTTER M H. Can one hear the shape of a drum? [J]. SIAM Rev,1987 (2):185-197.

Upper Bound of Second Eigenvalue with Weight for the Canonical Differential System with High Orders

ZHU Min-feng,QIAN Chun-lin

(Department of Basic Education,Suzhou Vocational University,Suzhou 215104,China)

This paper considers the estimation of the upper bound of second eigenvalue for the canonical differential system with high orders.The upper of second eigenvalue is dependent on the first eigenvalue by using integral,rayleigh theorem and inequality estimation.The estimation coefficients do not depend on the measure of the domain its which the problem is concerned.This kind of problem is significant both in theory of differential equations and in application to mechanics and physics.

canonical differential system with high orders;eigenvalue;eigenvector;the upper bound

O175.1

A

1008-5475(2012)04-0030-07

2012-08-06;

2012-09-05

苏州市职业大学青年基金资助项目(2010SZDQ12)

朱敏峰(1981-),男,江苏苏州人,讲师,硕士研究生,主要从事算子特征值估计研究.

(责任编辑:沈凤英)

猜你喜欢
上界正则苏州市
苏州市 多措并举提升全民安全意识
融合有效方差置信上界的Q学习智能干扰决策算法
苏州市坚持“三聚焦” 为民服务办实事
剩余有限Minimax可解群的4阶正则自同构
一个三角形角平分线不等式的上界估计
类似于VNL环的环
一道经典不等式的再加强
苏州市非物质文化遗产保护立法的实践与思考
有限秩的可解群的正则自同构
正则微分系统带权第二特征值的上界