马草川,王亚平,孙小科,裴瑞昌
(1.天水师范学院数学与统计学院,甘肃天水 741001;2.天水市第一中学,甘肃天水 741000)
具有不定位势的渐近线性p-Laplacian Dirichlet问题
马草川1,王亚平2,孙小科1,裴瑞昌1
(1.天水师范学院数学与统计学院,甘肃天水 741001;2.天水市第一中学,甘肃天水 741000)
利用山路引理及极小作用原理,证明了当非线性项在无穷远处满足一定的渐近线
性条件时,具有不定位势的渐近线性p-Laplacian Dirichlet问题,存在非平凡解.
非平凡解;渐近线性;Dirichlet问题;不定位势
近年来,具有不定位势问题得到了广泛的研究[1-11],其中文献[4]考虑了非线性特征值问题
其中Ω是RN(N≥1)中的有界光滑区域,V(x)满足条件(2),利用山路引理得到问题(3)的非凡解存在的如下结果:
引理1[5]若f:Ω×R→R满足以下假设:时,问题(3)至少有一个非平凡解.
易知u是问题(1)的一个弱解等价于I的临界点.
引理2设e是λ1的非线性特征问题(1)的特征函数,并且定理1中条件成立,则当
故由极小作用原理知结论成立.
[1]Amborosetti A,Rabinowitz P H.Variational methods in critical theory and application[J].Funct.Anal., 1973,14:349-381.
[2]Benci V,Rabinowitz P H.Critical point theorems for indefinite functional[J].Invent.Math.,1979,52:241-273.
[3]Smarandache F.Critical Point Theory and Applications[M].上海:上海科学技术出版社,1986.
[4]Cuesta M.Eigenvalue problems for the p-Laplacian with indefinite weight[J],Electronic Journal of Differential Equations,2001,33:1-9.
[5]Xuan B J.Existence results for a super linear p-Laplacian equation with indefinite weights[J].Nonlinear Analysis,2003,54:949-958.
[6]Sun J P,Li W T.Multiple positive solutions to second-order Neumann boundary value problems[J].Appl. Math.Comput.,2003,146:187-194.
[7]Gossez J P,Leadi L.Asymmetric elliptic problems in ℝn[J].Electronic Journal of Differential Equations, 2006,14:207-222.
[8]Shao Z Q,Hong J X.The eigenvalue problem for the Laplacian equations[J].Acta.Mathematica Scientia, 2007,02:329-337.
[9]Ariasa M,Camposea J,Cuestab M.An asymmetric Neumann problem with weights[J].Nonlinear Analysis, 2008,25:267-280.
[10]Cuesta M,Quoirin H R.A weighted eigenvalue problem for the p-Laplacian plus a potential[J].Nonlinear Differ.Equ.Appl.,2009,16:469-491.
[11]Dumitru M,Viorica V M,Nikolaos S.Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations[J].Monatsh.Math.,2010,159:59-80.
Asymptotically linear p-Laplacian Dirichlet problem with
indefinite weights
Ma Caochuan1,Wang Yaping2,Sun Xiaoke1,Pei Ruichang1
(1.School of Mathematics and Statistics,Tianshui Normal University,Tianshui741001,China; 2.Tianshui No.1 Middle School,Tianshui741000,China)
By using mountain pass and the least action theorems,the existience of nontrivial solution is obtained for a class of asymptotically linear p-Laplacian Dirichlet problem with indefinite weights.
nontrivial solution,asymptotically linear,Dirichlet problem,indefinite weights
O175. 23;O176.3
A
1008-5513(2012)04-0501-06
2011-07-02.
天水师范学院中青年教师科研资助项目(TSA0937).
马草川(1981-),硕士,讲师,研究方向:偏微分方程.
2010 MSC:34B15,58E05