赵瑞
摘要:三角变换是高考命题的热点,由于其公式众多,也是学生们学习时的难点。其实,可以从巧记和活用两个方面探讨三角公式的学习方法:一是把握公式规律,巧记公式,二是总结题型规律,活用公式。
关键词:三角变换;诱导公式;倍角公式
三角变换是高中数学的重要内容,是历年高考的必考内容,但也是学生们比较头疼的地方,总结起来原因有二。第一,三角公式繁多,记忆时容易出错;第二,即使公式都记住了,用公式解题时不知道该用哪一个公式。本文就针对学生学习时容易出现的问题,探讨怎样巧记活用三角公式进行三角变换。
一、把握公式规律,巧记公式
对三角公式的准确、熟练记忆是进行三角变换的前提,但是三角公式繁多:同角三角函数的基本关系式(8个)、诱导公式(36个)、两角和与差的三角函数公式(6个)、二倍角公式(5个),再加上各组公式的变形,总共有60多个公式。如何才能保证记忆时不出现错误呢?这就要求学生在记忆时不要死记硬背,而是要把握其中的规律,巧记公式。下面,介绍各组公式的记忆方法。
1. 同角三角函数的基本关系式
这组公式常称“三类八式”,即这八个公式分为三大类:平方关系、商数关系和倒数关系。八个公式可画一个六边形来记忆。
记法:①在最长对角线上的两个三角函数的乘积为1。如:tanα·cotα=1;②在3个倒三角形中,上面两个顶点的三角函数值的平方和等于下面顶点上的三角函数值的平方(中心点为1)。如:tan2α+1=sec2α;③任意一顶点上的三角函数值等于与之相邻的两个顶点的三角函数值的乘积。如:sinα=tanα·cosα.
2. 诱导公式
诱导公式看似很多,其实可以概括为一句口诀:“奇变偶不变,符号看象限”。诱导公式左边的角可统一写成k·±α(k∈Z)的形式,当为奇数时,等号右边的三角函数名称与左边的三角函数名称正余互变,当k为偶数时,等号右边的三角函数名称与左边一样;而公式右边的三角函数之前的符号,则把α当做锐角,k·±α为第几象限,以及左边的三角函数之前的符号即为公式右边的符号。
3. 两角和与差的三角函数公式
这6个公式可分为三组,故可分为三组来记忆。每一组的特征都很明显:两角和(差)的余弦:余余、正正、符号异;两角和(差)的正弦:正余、余正、符号同;两角和(差)的正切:分子同,分母异。
4. 二倍角公式
其实,二倍角公式是两角和的三角函数公式当两角相等时的特殊情况。把握住这点,记住两角和的三角函数公式,二倍角公式自然就记住了。有规律有方法地巧记公式,有事半功倍的效果。
二、总结题型规律,活用公式
记 住了三角公式,如果不了解三角变换的提醒规律,也很难去用公式解题。三角变换题目虽然很多,但是也是有规律可循的,大致可以分为以下几类。
1. 角的变换
进行角的变换常用的公式有诱导公式、两角和(差)公式和二倍角公式。因此,题目当中需要化角时就要想到用这些公式,而不是往别的公式上去套。例1:已知α、β为锐角,且sinα=,cos(α+β)=-,求sinβ的值。解析:此题就需要用到角的变换β=(α+β)-α,然后两边取正弦,右边用两角差的正弦公式展开即可。
2. 函数名称的变换
一般是切割化弦或弦化切割,常用公式为同角三角关系式中的倒数关系式和商数关系式。例2:已知tanα=3,求的值。解析:已知正切的值,求关于正余弦的值,很显然只能采用公式tanα=。
3. 常数变换
在三角变换中,有时需要将常数化为三角函数值,比较常见的是“1的变换”,常见的变形有1=sin2α+cos2α=sec2α-tan2α=cot2α-
sos2α。例3: 若2k?仔-≤α≤2k?仔+(k∈Z),则+的化简结果为( )。解析:巧用常数1的变换:1=sin2α+cos2α,则1-2sinαcosα= sin2α+cos2α-2sinαcosα=(sinα-cosα)2,同理,1+2sinαcosα=(sinα+cosα)2,再结合角的范围开方即可。
4. 幂的变换
降幂是三角函数变换时常用的方法,对次数较高的三角函数公式一般采用降幂处理方法,常用的降幂公式有:二倍角公式的逆用和同角三角函数平方关系式,降幂并非绝对,有时需要升幂,如对无理式常用升幂处理变成有理式。例4:化简cos8x-sin8x+ sin2x·sin4x。解析:本题中三角函数的次数较高,需要从降幂入手进行化简,先后用到平方差公式,二倍角公式和sin2α+cos2α =1。
总之,三角变换题目比较灵活,其解法也千变万化,没有固定的、唯一的解法。所以,在解题时,应根据题目的特点确定解题方法和变换技巧,再选择有关公式,千万不能对公式生搬硬套。如果在学习过程中多归纳、多总结,注意分析题目的结构及发现其规律,则可以结合所学的知识迎刃而解了。
参考文献:
[1]王红霞.三角恒等变换的常用方法与技巧[J].新高考,2010(2).
[2]朱孝春.三角变换的“四巧”[J].数学学习与研究,2009(1).
(平顶山市理工学校)