求函数零点问题的基本方法

2012-04-29 01:49:51王艳双
成才之路 2012年6期
关键词:原函数二分法正数

王艳双

新课改使高中课程发生很大的变化,减少和增加了很多内容,其中增加了函数零点问题。函数零点涉及到很多方法:如等价转化、函数方程、数形结合等思想方法,还有近似求函数零点方法——二分法这些成为求函数零点的基本策略。

一、求函数的零点

例1求函数y=x2-(x<0)2x-1(x≥0)的零点。

解:令x2-1=0(x<0),解得x=1,

2x-1=0(x≥0),解得x=。

所以原函数的零点为和-1和。

点评:求函数f(x)的零点,转化为方程f(x)=0,通过因式分解把方程转化为一(二)次方程求解。

二、判断函数零点个数

例2求f(x)=x-的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f(x)=0即x-=0,

解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为方程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数

例3若方程ax-x-a=0有两个解,求a的取值范围。

析:方程ax-x-a=0转化为ax=x+a。

由题知,方程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x 有两个不同的交点,如图所示。

(1)0

此种情况不符合题意。

(2)a>1。

直线y=x+a 在y轴上的截距大于1时,函数y=ax与函数y=a+x 有两个不同的交点。

所以a<0与0

点评:采用分类讨论与用数形结合的思想。

四、用二分法近似求解零点

例4求函数f(x)=x3+x2-2x-2的一个正数零点(精确到0.1)。

解:(1)第一步确定零点所在的大致区间(a,b),可利用函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定一个长度为1的区间。

(2)列表如下:

零点所在区间中点函数值 区间长度

(1,2)f(1.5) >0 1

(1,1.5) f(1.25) <00.5

(1.25,1.5) f(1.375) <00.25

(1.375,1.5) f(1.438)>0 0.125

(1.375,1.438) f(1.4065)>0 0.0625

可知区间(1.375,1.438)长度小于0.1,故可在(1.375,1.438)内取1.4065作为函数f(x)正数的零点的近似值。

点评:用二分法求函数零点近似值的过程中,首先依据函数性质确定函数零点存在的一个区间,此区间选取应尽量小,并且易于计算,再不断取区间中点,把区间的范围逐步缩小,使得在缩小的区间内存在一零点。当达到精确度时,这个区间内的任何一个值均可作为函数的零点。

(承德县第一中学)

猜你喜欢
原函数二分法正数
基于二进制/二分法的ETC状态名单查找算法
“二分法”求解加速度的分析策略
“二分法”求解加速度的分析策略
几类间断点与原函数存在性的关系辨析
卷宗(2020年34期)2021-01-29 05:36:24
“正数和负数”检测题
三角函数最值的求解类型及策略
估算的妙招——“二分法”
原函数是非初等函数的定积分的计算方法
一个包含Smarandache原函数与六边形数的方程
绝对值的作用