卡介苗初次免疫-增强免疫策略抗结核病的研究进展

2012-01-22 14:07陈振华范雄林
中国防痨杂志 2012年3期
关键词:异源佐剂保护性

陈振华 范雄林

据WHO统计,全球TB的发病率和新发患者数在近几年来均呈现下降趋势。2010年全球报告病例约880万,145万例死亡[1],这受益于各国对TB防治的重视和新技术在TB防治上的应用。但要实现TB的有效控制和WHO提出的2050年消除TB对全球公共卫生的影响的目标,仍面临着几个重大的问题:全球约1/3的人口感染了Mtb成为潜伏感染者(latent TB infection,LTBI),且5%~10%的LTBI一生中可能经内源性感染发展成为活动性TB患者[1];耐多药结核病(MDR-TB)在TB高负担国家流行[2],广泛耐药结核病(XDR-TB)甚至完全耐药结核病(TDR-TB)等已经出现[3-5];与 HIV 共感染,TB患者的病死率增加[6]。这些都对TB的防治提出了更高的要求。

BCG自1921年第一次应用于人类免疫接种预防TB以来,已累计有30亿人次接种,目前仍在以大约每年300万人群的接种速率递增[7],对预防儿童重症TB的发生和降低病死率起着举足轻重的作用。尽管BCG在全世界范围内被如此广泛地运用,但并非理想的抗TB疫苗(在婴儿出生时接种即可获得终生的保护性免疫)。临床试验和流行病学调查表明,BCG对成人TB的保护效率在0%~80%之间波动[8]。产生这种不稳定的免疫保护可能是由于在新生儿出生后接种BCG所诱导的保护性细胞免疫应答通常仅维持10~15年,随着免疫后时间的延长对TB的预防作用逐渐减退[9]。这也是目前TB疫情不能得到更好控制的主要原因之一。因此,加快发展新型的TB疫苗及免疫策略是缓解这一全球性公共卫生问题的有效措施。

TB疫苗的研制思路主要在于发展比BCG诱导的免疫保护更强、保护期更长的疫苗,从而取代BCG用于免疫接种。国内外学者通过大量的动物试验和临床研究,获得了共识:目前仅2种类型的疫苗具有上述潜力。一是以BCG为基础 的 改 造 BCG,如:r BCG30[10]、VPM 1002[11]、Aeras-422[12]和国内的r BCG∶∶85B-Rv3425[13]和rBCG∶∶X等[14],已证实在实验动物中具有比BCG更好的保护效率。二是以Mtb为基础的营养和(或)毒力缺失突变株,如:MtbΔRD1 Δpan CD[15]和 Mtb VAC[16],具有与BCG相当的保护效率。

针对BCG免疫保护的缺陷和新型疫苗研制的困镜,BCG的初次免疫(以下简称为初免)-增强策略(prime-boost strategy)被提出用于TB的预防。

一、同源性BCG初免-BCG增强策略

同源性增强,即用相同的疫苗再次或多次进行加强免疫。鉴于目前大部分人群都已接种过BCG,因此用BCG重复免疫,以期得到更持久、更有效的保护效果。Corner等[17]在非啮齿动物负鼠模型中用BCG初免、BCG增强并未发现任何有利的免疫反应的改变。这一结论在小鼠模型的研究中也得到支持[18-20]。Buddle等[21]进一步研究发现,用 BCG重复免疫牛后,发生了更为严重的、肉眼可见的TB病理性改变。而且,各地人群流行病学调查对BCG重复接种的效果提供了更有说服力的证据。回顾性研究表明,20世纪90年代芬兰中断BCG的重复接种并未对TB的发病率产生任何影响[22];匈牙利和俄罗斯实施的BCG再免疫计划,建议国民从出生到30岁期间连续接受5次BCG免疫,但没有找到可靠的证据表明该计划的实施有利于这些地区TB的防治[23-24]。巴西开展的一项针对7~14岁儿童的前瞻性研究表明,重复接种BCG未能使抗TB的保护性产生任何实质性的提高[25]。马拉维进行的人群前瞻性研究也得出了相似的结果[26]。所以,尽管BCG未能增强BCG初免的免疫保护机制 尚 不 清 楚,WHO(1995 年)[27]和 我 国 卫 生 部 (1997年)[28]均先后不推荐这一策略用于TB的预防。

二、BCG初免-异源性增强策略

既然再次免疫BCG的同源性增强策略没有取得预期的效果,国内外学者转而探索异源性增强策略。异源性增强(heterologous boost),即用相对于初免疫苗类型不同的抗原递送系统进行加强免疫。疫苗类型包括亚单位蛋白疫苗、DNA免疫和活病毒载体疫苗等形式,保护性抗原以BCG与Mtb共同表达或仅Mtb表达的抗原为基础。

1.亚单位蛋白疫苗增强:亚单位蛋白疫苗应用于人体已经被证实是比较安全的。它可诱导产生足够强度的T细胞反应,尤其是CD8+T细胞反应,但仍需要使用更高效的T细胞佐剂且须反复实施多次免疫[29-31]。2004年,GSK公司报道的抗TB候选疫苗,即Rv1196和Rv0125嵌合蛋白r Mtb72F增强BCG初免小鼠和豚鼠的免疫保护效果,r Mtb72F增强组可以减轻BCG单独免疫组动物肺脏感染Mtb后的肺实变、促进病损的愈合[32]。Andersen等[33]利用 CTA1-DD(由霍乱毒素A1单元酵素活性和葡萄球菌蛋白A的免疫球蛋白键结组成的一种口腔黏膜佐剂)作为融合蛋白Ag85B-ESAT-6的佐剂,经鼻对小鼠反复实施增强免疫,结果表明:BCG和蛋白疫苗联合应用组的CD4+T细胞的反应明显高于仅皮下注射免疫BCG组。类似的,Dietrich等[34]用大肠埃希菌不耐热肠毒素LTK63作为Ag85B-ESAT-6的佐剂,也增强了BCG初免过的小鼠的保护性。Brooks等[35]用单磷酰脂(MPL)作为佐剂,联合Ag85A注射到BCG初免的成年小鼠体内,也可增强BCG抗TB的能力。然而,Majlessi等[36]用减毒百日咳杆菌腺苷环化酶-Ag85A融合蛋白或者减毒百日咳杆菌腺苷环化酶-ESAT-6融合蛋白,虽增强了BCG∶∶RD1初免的特异性T细胞免疫,但其抗 Mtb的保护效力不及BCG∶∶RD1单独免疫组。Mtb主要分泌蛋白抗原85B(Ag85B)可增强BCG或过表达Ag85B的rBCG30初免豚鼠所诱导的免疫性,也并未有效地提升抗TB的保护性[37]。因此,免疫反应的加强不一定与保护效力的提高呈正相关。此外,免疫保护性抗原的选择也是亚单位疫苗异源性增强应用的一个重要影响因素。例如,在不同感染状态人群中针对Mtb黏附素之一的肝素结合血凝素(HBHA)的体液免疫与细胞免疫的反应均不同。HBHA可刺激潜伏感染者外周血单核细胞产生较高水平的γ干扰素(IFN-γ)。在初免过BCG的新生期和成年小鼠模型中,HBHA可明显增强BCG的免疫性,且初免与增强的时间间隔越长,观察到的增强效应越显著[38]。因此,加强筛选适用于亚单位疫苗异源性增强的靶抗原,以及研究保护性增强的机制是未来的方向。

2.DNA疫苗增强:多种 Mtb抗原的编码基因已作为DNA疫苗的主要靶抗原[39],部分免疫小鼠被证实可以提供不同程度的保护以抵抗 Mtb的攻击[40],但保护作用均未超过BCG。Mollenkopf等[41]最先报道Mtb Rv3407 DNA疫苗增强BCG初免的小鼠模型,经过2次重复DNA疫苗免疫的小鼠对Mtb气溶胶感染的抵抗力较BCG或DNA单独免疫组强。此后,DNA疫苗异源性增强免疫策略日益受到关注。笔者在表达ESAT6为基础的DNA疫苗和BCG联合应用的试验中证实了BCG缺失而Mtb特异表达的蛋白可以用于异源性增强免疫策略[42]。进一步的研究还证实以BCG缺失基因为基础的融合蛋白DNA疫苗可以增强BCG初免小鼠或牛抗 Mtb感染的保护性[43-47]。表达 Mtb HSP65的DNA疫苗,以及表达白细胞介素-12(IL-12)的DNA疫苗增强BCG初免策略,可以使猕猴抗Mtb攻击感染的存活率达到100%[48]。

DNA疫苗具有多效性、免疫作用时间长、制造和储藏方便、生产成本低等优点,不过进入人体的DNA有可能整合到基因组中,其安全性还需要更深入的研究。但并不妨碍此技术作为一种在动物模型中筛选可增强BCG抗Mtb的靶抗原的高效方法。

3.活病毒载体疫苗增强:抗TB的病毒载体疫苗目前最常用的包括痘病毒载体和腺病毒载体。痘病毒载体疫苗已经用到HIV感染者并证实安全,改良安卡拉痘病毒(modified vaccinia virus Ankara,MVA)就是其中之一。Williams等[49]和 Verreck 等[50]在 豚 鼠 和 猕 猴 模 型 均 证 明 了 表 达Ag85A的MVA85A病毒载体疫苗增强BCG初免方案,不仅能获得比BCG或MVA85A单独免疫更强的特异性T细胞反应,还具有更强的保护性。在英国、冈比亚和南非等地,MVA85A已进行临床Ⅰ期试验,MVA85A免疫健康的未接种过BCG和接种过BCG的自愿者,均提示安全且能有效地诱导多功能T细胞应答。但是,MVA85A是否能够增强BCG初免产生的免疫反应和放大机体自身的免疫效应,在不同地区出现了差异。英国两者均可产生;冈比亚和南非的接种过BCG和未接种BCG的自愿者在免疫MVA85A前后并没有明显的差别,这可能与环境分枝杆菌对BCG免疫接种作用的弱化有关[51-52]。近期,南非仍在继续开展针对无TB和HIV感染史且接种过BCG的婴幼儿的相关研究[53],英国则在进一步研究将MVA85A应用于LTBI的预防[54]。

Wang等[55]和 Xing等[56]构建了能表达 Ag85A、具有复制缺陷的重组人类腺病毒5型,即Ad Ag85A。在小鼠和豚鼠模型中验证了Ad Ag85A可以增强BCG初免后产生的保护性免疫[57-58],现已开始临床试验。表达 Ag85A、Ag85B 和TB10.4的融合抗原蛋白的重组腺病毒疫苗AERAS-402,在南非的临床期试验已经证明可诱导机体产生多功能T细胞,以及强烈而持久的CD8+T细胞反应,且免疫健康成年人是安全可靠的[59]。

重组病毒疫苗的优势在于安全,不需要佐剂,而且可以多途径免疫接种、刺激机体产生广泛而持久的CD4+和CD8+T细胞反应,是未来重点研究的方向之一。

三、结论

BCG作为目前惟一应用于临床的预防TB的疫苗,虽然对成人的保护效果不稳定,但它所提供的对新生儿到青少年阶段的保护效力是目前任何一种非BCG为基础的候选疫苗无法超越的。而且,BCG已经纳入WHO的全球扩大免疫计划,目前全球159个国家和地区接种BCG,覆盖率高达90%。在今后相对长的时间内,尚不可能有一种疫苗能够取代BCG。探索与BCG进行联合免疫的增强方案以维持或提高人群现有本身的免疫应答和免疫保护,不仅有很强的可行性,并且符合卫生经济学原则。目前已经进行临床试验的总共11种方案,其中8种均是采用增强BCG初免的策略。未来研究将更加强调以亚单位或重组病毒载体为基础的异源性增强BCG初免的策略,同时将深入异源性增强免疫的疫苗类型、增强途径和机制等方面的研究。依据目前这些策略在临床前研究中获得的有效性,有理由相信异源性增强策略将会为TB预防提供新的临床免疫方案。

[1]WHO Library Cataloguing-in-Publication Data.Global tuberculosis control 2011[EB/OL][2011-11-28].http://www.who.int/tb/publications/global_report/en/.

[2]Zignol M,Hosseini MS,Wright A,et al.Global incidence of multidrug-resistant tuberculosis.J Infect Dis,2006,194(4):479-485.

[3]Shah NS,Wright A,Bai GH,et al.Worldwide emergence of extensively drug-resistant tuberculosis.Emerg Infect Dis,2007,13(3):380-387.

[4]Centers for Disease Control and Prevention(CDC).Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs——worldwide,2000—2004.MMWR Morb Mortal Wkly Rep,2006,55(11):301-305.

[5]Dheda K,Migliori GB.The global rise of extensively drug-re-sistant tuberculosis:is the time to bring back sanatoria now overdue?Lancet,2011,Oct 25.[Epub ahead of print].

[6]Fennelly KP.Variability of airborne transmission of Mycobacterium tuberculosis:implications for control of tuberculosis in the HIV era.Clin Infect Dis,2007,44 (10):1358-1360.

[7]World Health Organization.BCG vaccine.WHO position paper[Article in English,French].Wkly Epidemiol Rec,2004,79(4):27-38.

[8]Fine PE.Variation in protection by BCG:implications of and for heterologous immunity.Lancet,1995,346 (8986):1339-1345.

[9]Colditz JA,Brewer TF,Berkey CS,et al.Efficacy of BCG vaccine in the prevention of tuberculosis.Meta-analysis of the published literature.JAMA,1994,271 (9):698-702.

[10]Tullius MV,Harth G,Maslesa-Galic S,et al.A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG.Infect Immun,2008,76 (11):5200-5214.

[11]Grode L,Seiler P,Baumann S,et al.Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin.J Clin Invest,2005,115(9):2472-2479.

[12]Sun R,Skeiky YA,Izzo A,et al.Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens;pre-clinical characterization,safety and protection against challenge with Mycobacterium tuberculosis.Vaccine,2009,27(33):4412-4423.

[13]Wang J,Qie Y,Zhu B,et al.Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice.Med Microbiol Immunol,2009,198(1):5-11.

[14]Shi C,Chen L,Chen Z,et al.Enhanced protection against tuberculosis by vaccination with recombinant BCG overexpressing HspX protein.Vaccine,2010,32(28):5237-5244.

[15]Sambandamurthy VK,Derrick SC,Hsu T,et al.Mycobacterium tuberculosis DeltaRD1 DeltapanCD:a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis.Vaccine,2006,24(37-39):6309-6320.

[16]Asensio JA,Arbués A,Pérez E,et al.Live tuberculosis vaccines based on phoP mutants:a step towards clinical trials.Expert Opin Biol Ther,2008,8(2):201-211.

[17]Corner LA,Buddle BM,Pfeiffer DU,et al.Vaccination of the brushtail possum(Trichosurus vulpecula)against Mycobacterium bovis infection with bacille Calmette-Guérin:the response to multiple doses.Vet Microbiol,2002,84(4):327-336.

[18]Feng CG,Palendira U,Demangel C,et al.Priming by DNA immunization augments protective efficacy of Mycobacterium bovis bacilli Calmette-Guérin against tuberculosis.Infect Immun,2001,69(6):4174-4176.

[19]Santosuosso M,McCormick S,Zhang X,et al.Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parental Mycobacerium bovis BCG immunization against pulmonary tuberculosis.Infect Immun,2006,74 (8):4634-4643.

[20]Goonetilleke NP,McShane H,Hannan CM,et al.Enhanced immunogenecity and protective efficacy against Mycobacterium tuberculosis of bacilli Calmette-Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara.J Immunol,2003,171(3):1602-1609.

[21]Buddle BM,Wedlock DN,Parlane NA,et al.Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination.Infect Immun,2003,71 (11):6411-6419.

[22]Tala-Heikkilä MM, Tuominen JE, Tala EO.Bacillus Calmette-Guérin revaccination questionable with low tubercu-losis incidence.Am J Respir Crit Care Med,1998,157 (4 Pt 1):1324-1327.

[23]WHO.Immunization,vaccines and biologicals[EB/OL].[2011-11-29].http://www.who.int/immunization/en/.

[24]Trnka L,Dankova D,Zitova J,et al.Survey of BCG vaccination policy in Europe:1994—96.Bull World Health Organ,1998,76(1):85-91.

[25]Barreto ML,Pereira SM,Pilger D,et al.Evidence of an effect of BCG revaccination on incidence of tuberculosis in schoolaged children in Brazil:second report of the BCG-REVAC cluster-randomised trial.Vaccine,2011,29(31):4875-4877.

[26]Karonga Prevention Trial Group.Randomised controlled trial of single BCG,repeated BCG,or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi.Lancet,1996,348(9019):17-24.

[27]Expanded programme on immunization.Immunization schedules in the WHO European Region,1995.Wkly Epidem Rec,1995,70(31):221.

[28]中华人民共和国卫生部.关于停止卡介苗复种的通知(卫疾控发[1997]第26号).北京,1997:1-2.

[29]Rouanet C,Locht C.Boosting BCG to protect against TB.Expert Rev Respir Med,2010,4(3):339-348.

[30]Fletcher HA,Hawkridge T,McShane H.A New Vaccine for Tuberculosis:The Challenges of Development and Deployment.J Bioeth Inq,2009,6(2):219-228.

[31]Kaufmann SH.How can immunology contribute to control of tuberculosis?Nat Rev Immunol,2001,1(1):20-30.

[32]Brandt L,Skeiky YA,Alderson MR,et al.The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M .tuberculosis-infected guinea pigs.Infect Immun,2004,11(72):6622-6632.

[33] Andersen CS,Dietrich J,Agger EM,et al.The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis.Infect Immun,2007,75(1):408-416.

[34]Dietrich J,Andersen C,Rappuoli R,et al.Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guérin immunity.J Immunol,2006,177(9):6353-6360.

[35]Brooks JV,Frank AA,Keen MA,et al.Boosting vaccine for tuberculosis.Infect Immun,2001,69 (4):2714-2717.

[36]Majlessi L,Simsova M,Jarvis Z,et al.An increase in antimycobacterial Th1-cell responses by prime-boost protocols of immunization does not enhance protection against tuberculosis.Infect Immun,2006,74(4):2128-2137.

[37]Horwitz MA,Harth G,Dillon BJ,et al.Enhancing the protective efficacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein.Infect Immun,2005,73 (8):4676-4683.

[38]Rouanet C,Debrie AS,Lecher S,et al.Subcutaneous boosting with heparin binding haemagglutinin increases BCG-induced protection against tuberculosis.Microbes Infect,2009,13(11):995-1001.

[39]范雄林,李元,徐志凯.结核分枝杆菌基因疫苗研究进展.细胞与分子免疫学杂志,2001,17增刊:121-123.

[40]Fan X,Gao Q,Fu R.Differential immunogenicity and protective efficacy of DNA vaccines expressing proteins of Mycobacterium tuberculosis in a mouse model.Microbiol Res,2009,16(4):374-382.

[41]Mollenkopf HJ,Grode L,Mattow J,et al.Application of mycobacterial proteomics to vaccine design:improved protection to Mycobacterium bovis BCG prime-Rv3407 DNA boost vaccination against tuberculosis.Infect Immun,2004,72(11):6471-6479.

[42]Fan X,Gao Q,Fu R.DNA vaccine encoding ESAT-6 enhances the protective efficacy of BCG against Mycobacterium tuberculo-sis infection in mice.Scand J Immun,2007,66(5):523-528.

[43]Derrick SC,Yang AL,Morris SL.A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacerium tuberculosis and boosts BCG induced protective immunity.Vaccine,2004,23(6),780-788.

[44]Badell E,Nicolle F,Clark S,et al.Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85BESAT-6 does not correlate with circulating IFN-gamma producing T-cells.Vaccine,2009,27(1):28-37.

[45]Wang C,Chen Z,Fu R,et al.A DNA vaccine expressing CFP21 and MPT64 fusion protein enhances BCG-induced protective immunity against Mycobacterium tuberculosis infection in mice.Med Microbiol Immun,2011,200(3):165-175.

[46]Lu J,Wang C,Zhou Z,et al.Immunogenicity and protective efficacy against murine tuberculosis of a prime-boost regimen with BCG and a DNA vaccine expressing ESAT-6 and Ag85A fusion protein.Clin Dev Immunol,2011,2011:617892.

[47]Maue AC,Waters WR,Palmer MV,et al.An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M.bovis.Vaccine,2007,25(24):4735-4746.

[48]Okada M,Kita Y,Nakajima T,et a1.Evaluation of a novel vaccine(HVJ-liposome/HSP65 DNA+IL-12 DNA)against tuberculosis using the cynomolgus monkey model of TB.Vaccine,2007,25(16):2990-2993.

[49]Williams A,Hatch GJ,Clark SO,et al.Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis.Tuberculosis (Edinb),2005,85(1/2):29-38.

[50]Verreck FA,Vervenne RA,Kondova I,et al.MVA.85A boosting of BCG and an attenuated,phoP deficient M.tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques.PLoS One,2009,4(4):e5264.

[51]Pathan AA,Sander CR,Fletcher HA,et al.Boosting BCG with recombinant modified vaccinia Ankara expressing antigen 85A:different boosting intervals and implications for efficacy trials.PLoS One,2007,2 (10):e1052.

[52]Hawkridge T,Scribz TJ,Gelderbloem S,et al.Safety and immunogenicity of a new tuberculosis vaccine,MVA85A,in healthy adults in South Africa.J Infect Dis,2008,198(4):544-552.

[53]Scriba TJ,Tameris M,Mansoor N,et al.Dose-finding study of the novel tuberculosis vaccine,MVA85A,in healthy BCG-vaccinated infants.J Infect Dis,2011,203 (12):1832-1843.

[54]Sander CR,Pathan AA,Beveridge NE,et al.Safety and immunogenicity of a new tuberculosis vaccine,MVA85A,in Mycobacterium tuberculosis-infected individuals.Am J Respir Crit Care Med,2009,179(8):724-733.

[55]Wang J,Thorson L,Stokes RW,et al.Single mucosal,but not parenteral,immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis.J Immunol,2004,173(10):6357-6365.

[56]Xing Z,Santosuosso M,McCormick S,et al.Recent advances in the development of adenovirus-and poxvirus-vectored tuberculosis vaccine.Curr Gene Ther,2005,5(5):485-492.

[57]Xing Z,McFarland CT,Sallenave JM,et al.Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.PLoS One,2009,4(6):e5856.

[58]Santosuosso M,McCormick S,Zhang X,et al.Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.Infect Immun,2006,74(8):4634-4643.

[59]Abel B,Tameris M,Mansoor N,et al.The novel tuberculosis vaccine,AERAS-402,induces robust and polyfunctional CD4+and CD8+T cells in adults.Am J Respir Crit Care Med,2010,181(12):1407-1417.

猜你喜欢
异源佐剂保护性
基于EM-PCNN的果园苹果异源图像配准方法
BC02 复合佐剂成分协同增强机体固有免疫应答的分析
腐植酸:盯住东北三省5650 万亩黑土地保护性耕作发力
DC-Chol阳离子脂质体佐剂对流感疫苗免疫效果的影响
肺保护性通气策略对老年患者腹腔镜结直肠癌术后认知功能的影响
脸谱与假面 异源而殊流
养心暖阁春意煦 时花新句上墙来 养心殿内檐书画保护性修复
农业农村部 财政部印发《东北黑土地保护性耕作行动计划(2020—2025年)》
基于SSR分子标记的Nicotiana tobacum–N. plumbaginifolia异源染色体植株的鉴定与筛选
五味温通除痹胶囊对佐剂性关节炎大鼠自噬蛋白Beclin-1、LC3-Ⅱ表达的影响