彭博,游园园,孙黎光
(中国医科大学1.门诊部,2.基础医学院生物化学与分子生物学教研室,辽宁沈阳110001)
铅暴露导致小鼠学习记忆功能障碍及海马蛋白激酶B表达降低
彭博1,游园园2,孙黎光2
(中国医科大学1.门诊部,2.基础医学院生物化学与分子生物学教研室,辽宁沈阳110001)
目的探讨蛋白激酶B(PKB)在慢性铅暴露所致小鼠学习记忆功能障碍中的作用。方法5~6周龄小鼠交配后,铅暴露组仔鼠通过胎盘、乳汁和饮水饲醋酸铅2.4,4.8和9.6 mmol·L-1,连续42 d。第42天水迷宫实验测平台潜伏期;检测血及脑铅浓度;Sanna方法检测仔鼠海马CA1区长时程增强(LTP)和群峰电位幅值(PS);Western印迹法检测脑海马总PKB(t-PKB)及磷酸化PKB(p-PKB)的表达。结果与正常对照组相比,铅暴露组小鼠寻找平台时间明显延长(P<0.05)。正常对照组血铅为(0.05±0.02)mg·L-1,铅暴露组分别为0.29±0.06,0.91±0.15和(1.46±0.37)mg·L-1;正常对照组脑铅为(0.12±0.056)μg·g-1,铅暴露组分别为2.07±0.55,10.18±1.51和(14.20±2.63)μg·g-1。学习记忆降低程度与血铅、脑铅浓度成正相关(r=0.678,r=0.645,P<0.01)。高频刺激后,正常对照组的PS幅值明显升高,为刺激前的1.76倍,而铅暴露组PS幅值下降到刺激前的85%。与正常对照组比较,暴露铅4.8及9.6 mmol·L-1组,PS幅值明显下降(P<0.01)。铅暴露组的LTP诱发成功率亦有所下降。小鼠海马CA1区LTP损伤程度与血铅、脑铅浓度呈正相关(r=0.659,r=0.638,P<0.01)。铅暴露组小鼠脑海马p-PKB表达均明显降低,并具有浓度效应关系。p-PKB表达与血脑铅浓度呈负相关(r=-0.840,r=-0.813,P<0.01),与学习记忆能力损伤程度呈负相关(r=-0.668,P<0.01)。铅对小鼠海马神经元细胞t-PKB的表达无影响。结论慢性铅暴露可导致学习记忆功能下降,可能与海马p-PKB表达下降有关。
蛋白激酶B;铅;海马;学习记忆;长时程增强;群峰电位幅值
铅暴露会导致儿童学习记忆功能低下,严重影响儿童生长期的智力发育[1],其机制尚不清楚。本课题组前期研究发现,铅暴露通过影响蛋白激酶C(protein kinase C,PKC)、细胞外信号调节激酶(extrocellular regulated kinase,ERK)、钙/钙调素依赖性蛋白激酶Ⅱ(Ca2+/calmodulin dependent protein kinaseⅡ,CaMKⅡ)等蛋白激酶的活性,进而导致染铅鼠学习记忆功能下降[2-8]。PKB/Akt途径可激活多种底物,调节细胞的存活、分化、增殖和代谢等[9]。Rodgers等[10]报道PKB/Akt也参与神经元及胶质细胞的存活、分化和凋亡等。本研究拟观察慢性染铅对小鼠学习记忆行为、长时程增强(long-term potentiation,LTP)及小鼠海马PKB表达的影响,进一步探讨铅暴露导致学习记忆功能障碍的机制。
总PKB多克隆抗体和磷酸化PKB Thr473多克隆抗体(兔抗大鼠、小鼠和人)购自美国Cell Signaling公司;辣根过氧化物酶标记的羊抗兔IgG、羊抗兔IgG二抗和ECL发光检测液购自北京中杉金桥生物技术有限公司;蛋白预染标志物,美国Invitrogen公司;抗β肌动蛋白抗体,美国Santa Cruz;BCA蛋白浓度测定试剂盒,北京碧云天生物技术有限公司;SDS、丙烯酰胺-甲叉双丙烯酰胺(Acr-Bis)、苯甲基磺酰氟化物、乙二胺四乙酸、抑肽酶、人工脑脊液(ACSF)组分及醋酸铅等试剂均为美国Sigma公司产品。
低温高速离心机(Sigma),UP50H型超声粉碎机(美国Geprugte Sicherheit公司),VE-180型电泳仪(上海天能科技有限公司),DY-Ⅱ型转印槽和DYCP-31DN型水平电泳仪(北京六一仪器厂),图像分析成像软件(Chem Image 5500 V2.03),ZQP-86振动切片机、MEZ-8301微电极放大器、SEN-3301刺激器、SS-202J隔离器和HXD-2000电信号处理分析软件(北京华翔公司)。
昆明系小鼠,体质量28~34 g,由中国医科大学实验动物部〔许可证号SCXK(辽)2008-0005〕提供。小鼠按每笼雄∶雌为1∶2自然交配,孕鼠随机分为4组,每组10只:正常对照组,3个铅暴露组为醋酸铅2.4,4.8和9.6 mmol·L-1。每个母鼠最多喂养10只仔鼠。仔鼠出生后通过乳汁染铅,第21天断乳后,仔鼠饮用与母鼠相同的饮用水。正常对照组饮用自来水。于出生后第42天仔鼠进行水迷宫实验,水迷宫实验后,取血样后,断头处死,冰上快速解剖取海马,检测铅含量和测定LTP。部分海马组织放入液氮中,贮存到-70℃冰箱中,用于PKB表达的测定。
定位航行实验共进行7 d。每天训练分上、下午两段进行,每段训练2次,训练时随机选择一个入水点,将小鼠面向池壁放入水中,观察并记录小鼠寻找并爬上平台所需时间(潜伏期)。4次训练分别从不同的入水点入水,如果小鼠在120 s内未找到平台,将其引至平台稳定10 s。潜伏期记录为120 s,每次训练间隔60 s。
水迷宫实验后,以微量注射器经眼眶采静脉血0.5~1.0 ml,肝素抗凝。200 μl静脉血,加2.5 ml稀硝酸0.1 mol·L-1,混匀放置过夜,加体积分数0.1的三氯醋酸300 μl,3000×g离心15 min,取上清石墨原子吸收法测定血铅含量。取小鼠的双侧海马,称重后加5 ml纯硝酸,24 h后,加热消化,冷却定容到25 ml,石墨原子吸收法测定脑铅含量。
水迷宫实验后,每组取10只仔鼠,快速断头,迅速取出全脑置于0~4℃且用95%O2和5%CO2饱和的ACSF(mmol·L-1:NaCl 124,KCl 4.4,NaH2PO41,NaHCO325,MgSO41.2,CaCl22,葡萄糖10,pH 7.4)中。氧饱和后,切去小脑和1/3前脑,用胶水将含有海马的脑组织块固定在载物浴碟上,用振动切片机冠状面切厚度为400 μm的脑片。记录电极置于CA1区锥体细胞层。刺激参数为:100 Hz,100脉冲刺激三串,串间隔10 s。
高频刺激(high frequency stimulation,HFS)后,用单脉冲刺激检验诱发的群峰电位幅值(population spike amplitude,PS)变化及变化维持的时间表示,如PS的平均幅值高于或低于基线值的10%以上,并维持30 min,被认为统计学有意义,高者定义为LTP。
取冰冻海马组织,加入适量预冷的细胞裂解液〔NaCl 0.1 mmol·L-1,Tris-HCl 0.01 mmol·L-1(pH 7.6),EDTA 1 mmol·L-1(pH 8.0),抑肽酶0.1 mg·L-1,PMSF 0.1 mg·L-1〕,4℃超声粉碎后,17 000×g离心1 h,取上清分装。用BCA法定量蛋白浓度。上样总蛋白40 μg,12%SDS-PAGE分离蛋白质,电转移至硝酸纤维素膜,5%脱脂牛奶室温封闭2 h。一抗(1∶400),二抗(1∶5000),ECL试剂显带,X线片曝光,显影定影后扫描。利用ChemiImager 5500 V2.03图像分析软件对实验结果进行分析,以目的条带与内参照β肌动蛋白的平均吸光度比值表示相对表达水平,进行半定量分析。
Fig.1 Effect of lead acetate on time of finding platform.Young mice were exposed to lead acetate(0,2.4,4.8 and 9.6 mmol·L-1)by placenta,milk and drinking water for 42 d consecutively.Morris water maze was determined in postnatal 42 d.±s,n=10.*P<0.05,compared with corresponding normal control group.
图1结果显示,与正常对照组相比,铅暴露组第1天寻找平台使用的时间略长于正常对照组,但只有9.6 mmol·L-1组的差异有统计学意义(P<0.05)。从第2天开始,正常对照组所用时间明显缩短,为第1天所用时间的64%;铅暴露组所用的时间虽然也减少,分别为第1天所用时间的64%,75%和86%。第6和第7天时,铅暴露组所用的时间均高于正常对照组,差异具有统计学意义(P<0.05)。提示铅暴露可明显损伤小鼠的空间学习记忆能力。Pearson相关分析显示,学习记忆能力损伤程度与血铅、脑铅浓度呈正相关(r=0.678和0.645,P<0.01),即随血铅、脑铅浓度升高,空间学习记忆损伤程度越严重。
表1结果表明,与正常对照组相比,铅暴露组仔鼠血铅浓度和脑铅浓度显著增加(P<0.01),并呈剂量相关性(r=0.701和0.678,P<0.01)。
Tab.1 Effect of lead acetate exposure on brain and blood lead in mice
高频刺激前,正常对照组PS幅值为(156±13.7)mV,铅暴露组为(139.9±13.2)mV,两组无显著性差异。高频刺激后,正常对照组的PS幅值明显升高,为刺激前的1.76倍,而铅暴露组的PS幅值下降到刺激前的85%,两组在同一时间的PS幅值比较有统计学意义(图2A)。铅暴露2.4 mmol·L-1组PS幅值与正常对照组比较无显著性差异。如图2B所示,与正常对照组比较,铅暴露4.8及9.6 mmol·L-1组PS幅值明显降低(P<0.01)。铅暴露组的LTP诱发成功率亦有所下降,正常对照组LTP诱发成功率为78%(7/9)。铅暴露组LTP诱发成功率为60%(6/10)。Pearson相关分析显示,小鼠海马CA1区LTP损伤程度与血铅、脑铅浓度呈正相关(r=0.659和0.638,P<0.01),即随血铅、脑铅浓度升高,LTP损伤程度越严重。
图3结果显示,与正常对照组相比,铅暴露组p-PKB表达显著降低(P<0.01),分别降低了9.7%,47.2%和65.7%;并与铅浓度呈负相关(r=-0.840,P<0.01)。铅暴露对总PKB蛋白表达无影响。Pearson相关分析显示,p-PKB表达与血脑铅浓度呈负相关(r=-0.840,r=-0.813,P<0.01),即血脑铅的浓度越高,p-PKB表达降低越明显。p-PKB表达与学习记忆能力损伤程度呈负相关(r=-0.668,P<0.01),即p-PKB表达降低越明显,学习记忆损伤程度越严重。
Fig.2 Effects of lead acetate exposure on long-term potentiation(LTP)in mice.A:examples of original traces of population spike recording from mice of control and chronic lead exposure group in 5 min before high frequency stimulant(HFS)(a,c)and after HFS 20 min(b,d)of normal control and chronic lead exposure groups,respectively.B:defined the average of seven PS before HFS as 100%.±s,n=7.**P<0.01,compared with corresponding normal control group.
Fig.3 Effect of lead on protein kinase B(PKB)expression in hippocampus of mice exposed to chronic lead.A:lead acetate 0,2.4,4.8 and 9.6 mmol·L-1was given to mice for 6 weeks.B:the semiquantitative result of A.±s,n=4.*P<0.05,compared with corresponding control group.
本研究结果提示,慢性铅暴露可明显损伤小鼠的空间学习记忆能力,损伤程度与血铅、脑铅的浓度成正相关;水迷宫结果表明,高浓度染铅可导致空间记忆损伤。有研究证明,基因改变的小鼠在CA1区不能诱导LTP,并显示空间记忆缺失[15],故选定CA1的LTP为测定指标。慢性铅暴露鼠海马脑片LTP实验证明,铅暴露导致小鼠海马CA1区LTP异常,高频刺激前正常对照组及铅暴露组的PS幅值无明显差异,而高频刺激后,铅暴露组PS幅值比正常对照组明显降低。铅暴露组的LTP诱发成功率亦有所下降。该结果说明铅暴露可使小鼠LTP异常,导致空间记忆损伤。
研究发现,PI3K激活下游的PKB/Akt等参与海马CA1区LTP的维持期的磷酸化,而与LTP的诱导无关[16]。Western印迹结果显示,慢性铅暴露对小鼠大脑海马组织t-PKB表达水平没有显著性影响,但可降低小鼠大脑海马组织p-PKB的表达水平。PKB磷酸化与血铅浓度呈负相关,与学习记忆能力损伤程度比较呈负相关。该结果说明随染铅浓度增加,PKB磷酸化量减少,进而导致学习记忆功能低下。因PKB的磷酸化在一定程度上代表PKB的活性,说明铅是通过影响PKB的活性而导致小鼠学习记忆功能下降的。该结果说明PKB是铅作用的一个靶点,即铅通过影响中枢神经系统海马神经元细胞信号转导过程中PKB的磷酸化,而进一步影响LTP的维持,导致学习记忆功能异常。这是铅致学习记忆功能紊乱的原因之一,即慢性铅暴露小鼠脑海马组织PKB表达降低与慢性铅暴露小鼠学习记忆功能异常有关。前期研究指出,铅暴露时大脑皮质PKB表达也有类似改变[17],其详细机制有待于进一步探讨。
[1]Canfield RL,Henderson CR Jr,Cory-Slechta DA,Cox C,Jusko TA,Lanphear BP.Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter[J].N Engl J Med,2003,348(16):1517-1526.
[2]Hou WJ,Sun LG,Zhu QW,Wu Z,Liu SY,Xing W.Relationships among plumbum,activity of protein kinase C in the brain tissue of fetal mice and changes in memory function[J].Chin J Clin Rehabilit(中国临床康复),2005,9(4):241-243.
[3]Yang J,Sun LG,Cai K,Zong ZH,Xing W,Liu SY,et al.Effect of acute and chronic lead exposure on CA1-long term potentiation and active extracellular signal-regulated kinase 2 of rat hippocampus[J].Chin J Pharmcol Toxicol(中国药理学与毒理学杂志),2004,18(1):66-70.
[4]Wen T,Sun LG,Zong ZH,Xing W,Liu SY.Effect of lead exposure on expression of Ca2+-calmodulin dependent protein kinaseⅡin mice[J].Chin J Pharmcol Toxicol(中国药理学与毒理学杂志),2005,19(5):393-395.
[5]Zhang Y,Sun LG,Ye LP,Cao SC,Wang Y.The effect of lead on ERK activity and total of rat primary neural-glia culture[J].J Toxicol(毒理学杂志),2007,21(5):395-398.
[6]Gao S,Wen F,Sun LG,Gong HZ,Jiang H.Effect of chronic lead exposure on expression of PKC-γ in mice hippocampus[J].Chin J Public Health(中国公共卫生),2008,24(7):793-794.
[7]Peng B,Wu Z,Zhang CD.Effect of chronic lead exposure on expression of PI3Ks in cortical neuron of mice[J].Chin J Public Health(中国公共卫生),2010,26(2):228-229.
[8]Peng B,You YY,Gao S,Sun LG.Effect of chronic lead exposure on expression of PI3Ks/PKB pathway in cortical neuron of mice[J].J Toxicol(毒理学杂志),2012,26(2):92-94.
[9]Alessi DR,Andjelkovic M,Caudwell B,Cron P,Morrice N,Cohen P,et al.Mechanism of activation of protein kinase B by insulin and IGF-1[J].EMBO J,1996,15(23):6541-6551.
[10]Rodgers EE,Theibert AB.Functions of PI3-kinase in development of the nervous system[J].Int J Dev Neurosci,2002,20(3-5):187-197.
[11]Selcher JC,Atkins CM,Trzaskos JM,Paylor R,Sweatt JD.A necessity for MAP kinase activation in mammalian spatial learning[J].Learn Mem,1999,6(5):478-490.
[12]Fernandez FJ.Micromethod for lead determination in whole blood by atomic absorption,with use of the graphite furnace[J].Clin Chem,1975,21(4):558-561.
[13]Sanna PP,Berton F,Cammalleri M,Tallent MK,Siggins GR,Bloom FE,et al.A role for Src kinase in spontaneous epileptiform activity in the CA3 region of the hippocampus[J].Proc Natl Acad Sci USA,2000,97(15):8653-8657.
[14]Ye LP,Sun LG,Ren F,Liu P,Zhang Y.Anti-apoptoic signal pathway of bFGF by ERK in ovarian cancer cell line CAOV3[J].Chin J Anat(解剖学杂志),2007,30(2):146-149,156.
[15]Nosten-Bertrand M,Errington ML,Murphy KP,Tokugawa Y,Barboni E,Kozlova E,et al.Normal spatial learning despite regional inhibition of LTP in mice lac-
king Thy-1[J].Nature,1996,379(6568):826-829.[16]Sanna PP,Cammalleri M,Berton F,Simpson C,Lutjens
R,Bloom FE,et al.Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region[J].J Neurosci,2002,22(9):3359-3365.
[17]Peng B,Zhang CD,Ren Y,Wu Z.Effect of protein kinase B on the learning and memory functions of mice with chronic lead exposure[J].Chin J Neuromed(中华神经医学杂志),2009,8(4):363-366.
Impairment of learning and memory and decreasing of protein kinase Bexpression in mice hippocampus induced by lead
PENG Bo1,YOU Yuan-yuan2,SUN Li-guang2
(1.Outpatient Department,2.Department of Biochemistry and Molecular Biology,College of Basic Medical Sciences,China Medical University,Shenyang110001,China)
OBJECTIVETo explore the effect of protein kinase B(PKB)expression on learning and memory in hippocampus neuron of mice exposed to chronic lead.METHODSYoung mice were exposed to acetic lead 0,2.4,4.8 and 9.6 mmol·L-1by placenta,milk and drinking water for 42 d consecutively,after mice of 5-6 weeks were mated.Morris water maze was determined in postnatal 42 d to observe the capability of spatial learning and memory,blood and brain lead was determined in mice.The population spike(PS)amplitude in CA1 region mice in four groups were alternatively determined by Sanna method.The expression of total PKB(t-PKB)and phosphorylated PKB(p-PKB)determined by Western blotting.RESULTSThe mean time of finding the platform in lead exposure group was higher than that of the control group(P<0.05).Compared with blood lead in control group(0.05±0.02)mg·L-1;blood lead in lead exposure groups was 0.29±0.06,0.91±0.15 and(1.46±0.37)mg·L-1,respectively.Compared with the brain lead in control group was(0.12±0.056)μg·g-1tissue,brain lead in lead exposure groups was 2.07±0.55,10.18±1.51 and(14.20±2.63)μg·g-1,respectively.Chronic acetic lead exposure could damage the capability of spatial learning and memory in mice obviously;the damage level was positive correlated with the concentration of blood and brain lead(r=0.678 and 0.645,P<0.01).After the application of the high frequency stimulation(HFS),the PS amplitude in control group increased in relation to baseline amplitude to 176%,while in chronic lead exposure group decreased to 85%.PS amplitude of lead 4.8 and 9.6 mmol·L-1groups was significantly lower then that in the corresponding control group(P<0.01).The incidence of long-term potentiation(LTP)induction of lead exposure group decreased significantly.The damage level of LTP in lead exposure group was positive correlate with the concentration of blood and brain lead(r=0.659,r=0.638,P<0.01).The expression of p-PKB in hippocampus of lead exposure group was decreased significantly dose-dependently.The expression of p-PKB in hippocampus was negatively correlated with the concentrations of blood lead and brain lead(r=-0.840,r=-0.813,P<0.01),and the capability of spatial learning and memory(r=-0.668,P<0.01).The t-PKB protein levels did not change under the same experimental conditions.CONCLUSIONThe chronic acetic lead exposure could depress the function of learning and memory in mice.The decreased expression of p-PKB induced by lead exposure in hippocampus may be the one of the reasons of the damage of learning and memory induced by lead exposure in mice.
protein kinase B;lead;hippocampus;learning and memory;long-term potentiation;population spike amplitude
The project supported by National Natural Science Foundation of China(39970651)
SUN Li-guang,E-mail:ydslg@163.com,Tel:(024)23256666-5297
R995
A
1000-3002(2012)06-0801-05
10.3867/j.issn.1000-3002.2012.06.004
国家自然科学基金(39970651)
彭博(1969-),女,副主任医师,硕士,主要从事神经系统疾病与信号转导研究,E-mail:ydpb@163.com;孙黎光(1944-),女,教授,博士生导师,主要从事细胞信号转导及神经毒理学研究。
孙黎光,E-mail:ydslg@163.com,Tel:(024)23256666-5297
2012-02-15接受日期:2012-06-14)
(本文编辑:乔虹)