太湖湖滨带底泥氮、磷、有机质分布与污染评价

2012-01-13 08:36卢少勇王殿武许梦爽金相灿河北农业大学资源与环境科学学院河北保定0700中国环境科学研究院湖泊工程技术中心国家环境保护湖泊污染控制重点实验室北京000
中国环境科学 2012年4期
关键词:湖滨污染区底泥

王 佩,卢少勇,王殿武,许梦爽,甘 树,金相灿 (.河北农业大学资源与环境科学学院,河北 保定0700;.中国环境科学研究院湖泊工程技术中心,国家环境保护湖泊污染控制重点实验室,北京 000)

底泥是生态系统的重要组成部分,底泥不仅可间接反映水体的污染情况、水动力状态,且在外界水动力因素制约下向上覆水体释放营养成分,影响湖泊水质和富营养化过程[1].

太湖位于长江三角洲南缘,介于N30°55′42″~31°33′50″,E119°53′45″~120°36′15″ 之间,是我国第三大淡水湖[2].内湖滨带是湖泊流域中水域与陆地相邻生态系统间的过渡地带,是湖泊生态系统受人类活动影响最敏感的部分.内湖滨带在促淤造地、维持生物多样性和生态平衡及提升生态旅游品质等方面[3-4]均十分重要.近年来,由于滨湖地区社会经济迅速发展,入湖污染负荷增加,太湖水体和底泥中的污染物不断积累,湖泊富营养化有加重趋势[5].

目前,针对太湖水体及底泥已有大量研究,如邓建才等[6]研究了太湖水体氮磷的空间分布;金相灿等[7]研究了太湖东北部底泥可溶性氮、磷的季节性变化;赵兴青等[8]采集了不同季节太湖梅梁湾和贡湖底泥柱样,研究了底泥营养盐含量的垂直变化;雷泽湘等[9]研究了水生植物氮磷与湖水和底泥氮磷含量的关系;张明礼等[10]研究了太湖竺山湾底泥中有害物质含量.但对太湖湖滨带底泥的研究鲜有报道.本文通过对太湖湖滨带不同分区底泥的分析,揭示太湖湖滨带底泥有机质(OM)、总氮(TN)、总磷(TP)的污染现状、分布特征并对其进行营养评价,旨在系统全面的揭示太湖湖滨带底泥污染现状,为太湖富营养化控制提供理论指导和技术支撑.

1 材料与方法

1.1 样点的布设与采集

本次全湖湖滨带大规模调查,旨在全面了解环太湖湖滨带底泥的污染现状.调查范围为环太湖防洪大堤内,水向辐射带 50~100m内的区域,平均水深1.4m.采样时间为2010年08月.用彼德森采泥器,采集表层底泥,泥厚 10cm.环太湖湖滨带共布50个点,湖滨带分区及点位布置见图1.

图1 太湖湖滨带分区及底泥采样点位Fig.1 The regional classification and sampling sits in the lakeside zones of Taihu Lake由太湖水专项湖滨带课题组绘制

样品采后冷藏带回实验室,待底泥冷冻干燥后,去除样品中贝壳、杂草、沙粒等杂物,经研磨、过筛(100目)后,保存于密封袋中,置于冰箱待用.

1.2 底泥测定项目与方法

底泥主要测定项目包括 OM(重铬酸钾容量法)、TP(SMT法)、TN(全自动凯式定氮法)[11].

1.3 数据处理

数据处理及其相关分析用 Excel2007与 SPSS16.0软件.

2 结果与讨论

2.1 OM分布特征

OM 是底泥中重要的自然胶体之一,也是反映有机营养程度的重要标志[12].由图2可知,湖滨带各分区底泥中OM含量在1.42%~9.96%间,各分区平均值由高到低依次为:东太湖>竺山湾>贡湖>梅梁湾>南部沿岸>东部沿岸>西部沿岸.东太湖OM最大值、最小值、平均值分别为:9.95%、2.85%和5.66%,均为各分区中最高,其它各区差异不大.

图2 太湖湖滨带底泥有机质分布Fig.2 Distribution of organic matter in sediments of lakeside zones of Taihu Lake

研究表明,富营养化水体中底泥所含OM,一般来自城市生活污水和水生生物死亡残骸长期积累[13-14].东太湖周围多为出湖河流[15],因此受生活污水影响较小.东太湖湖滨底泥OM较高,可能与围网养殖及水生植物大量生长有关.2009年初虽完成了围网大规模缩减,2010年东太湖围网养殖面积约2600hm2[16],但杨再福等[17]认为,东太湖的围网养殖面积至少应控制在1000hm2以内,才能保证东太湖生态可持续发展,因此由围网养殖导致鱼蟹饵料及排泄物沉积;围网引起的湖面狭窄,吹程减小,风浪减弱等问题仍存在,再加上沼泽化加剧,1959~ 1997年东太湖沼泽化综合指数由1.47增至2.41[16],由此导致挺水植物及浮叶植物的大量生长,2009年水生植物覆盖率达97%,为全湖水生植物发育最好的区域[18],大量水生植物残体沉积可能是导致东太湖比其他各区OM高的主要原因.

2.2 TN、TP分布特征及分析

由图3(a)可知:太湖湖滨带底泥TN空间分布差异显著,TN含量在 458~5211mg/kg间.各分区TN含量平均值变化趋势:东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸.根据 EPA制定的底泥分类标准,各区 TN平均值:梅梁湾和西部沿岸 TN<1000mg/kg,属轻度污染区;东太湖在2000mg/kg以上,属重度污染区;其他各区均在1000~2000mg/kg间,属中度污染区.

从图4(a)可见,TN与OM之间极显著正相关(r=0.903, P<0.01),说明OM在底泥中的富集是TN的主要来源,TN和OM的沉积具很高的协同性,它们主要通过水生植物残体的沉积过程进入底泥[19-20].因此东太湖底泥中 TN 也比 其他各区高.

图4 太湖湖滨带底泥TN、TP与OM回归分析Fig.4 Regressions of TN, TP to OM in sediments of lakeside zones of Taihu Lake

由图 3(b)可见太湖湖滨带底泥中 TP含量在128.56~1392.16mg/kg间,各分区TP平均值变化趋势:竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸.根据EPA制定的底泥分类标准,各分区TP平均值:梅梁湾在420~650mg/kg间,属中度污染区;竺山湾大于 650mg/kg,属重度污染区;其他各区均小于420mg/kg,属轻度污染区.

由图 4(b)可知,TP与 OM 之间弱相关(r=0.073,P<0.332),表明 TP主要并非由底泥中OM 的富集造成.根据对湖滨带底泥进行的磷形态分析及文献[20]可知,无机磷是太湖湖滨带底泥中磷的主要存在形式,外源输入是无机磷的重要来源.竺山湾和梅梁湾磷污染显著高于其它各区可能因为:两区位于太湖北部重工业污染区,湖滨区有多条入湖河流河口,形成较长的河口型湖滨带.根据课题组同期河流调查监测数据:竺山湾附近有太滆运河、漕桥、殷村等入湖河流,各河流水体中TP平均超过0.17mg/L,超出地表水环境质量Ⅳ类标准,河流底泥中 TP含量平均约800mg/kg,超过 EPA制定的底泥重度污染标准(650mg/kg),梅梁湾附近入湖河流武进、直湖等水体中TP平均浓度和底泥中TP平均含量分别为0.18mg/L和 412.06mg/kg;因此竺山湾受入湖河流污染较重;再加上竺山湾独特的地理环境,又处于下风向,为蓝藻堆积严重区,藻类死亡堆积,就全湖看,易形成厌氧环境,利于反硝化作用,故 N含量会降低,而P含量高,藻类沉积带来的N、P及OM多.

3 太湖湖滨带底泥营养评价

目前对浅水湖泊底泥的污染状况尚无统一的评价方法和标准,多用有机指数和有机氮评价法[21],只考虑了OM和有机氮,而忽略了P;有的参用加拿大安大略省环境和能源部(1992)制定的环境质量评价标准[22-27],该标准根据底泥中污染物对底栖生物的生态毒性效应进行分级,虽然后者考虑到磷,但此标准源于对海洋底泥的生态毒性分析.因此本文针对太湖湖滨带各区底泥 N、P、OM的分布特点,用综合污染指数评价法和有机指数评价法来评价太湖湖滨表层带底泥污染现状.

3.1 综合污染指数评价

以1960年太湖底泥中TN、TP实测值的平均值作为背景值(即评价标准),由单项污染指数计算公式[28]:

式中: Si为单项评价指数或标准指数, Si大于 1表示含量超过评价标准值; Ci为评价因子i的实测值; Cs为评价因子 i的评价标准值 CSTN= 0.067%, CSTP=0.044%[29]. F为n项污染物污染指数平均值, Fmax为最大单项污染指数.

太湖湖滨带各分区底泥氮磷污染评价及污染程度分级结果见表1和表2.

表1 太湖湖滨带各分区底泥综合污染评价Table 1 Comprehensive pollution assessment for the sediments in lakeside zones of Taihu Lake

表2 太湖湖滨带底泥综合污染程度分级Table 2 Standard and level of comprehensive pollution in sediments of lakeside zones of Taihu Lake

根据表1中综合污染指数,可得湖滨带其各分区底泥污染分布(图5).

依据表 2,太湖湖滨带各分区底泥污染平均水平依次是东太湖>竺山湾>南部沿岸>梅梁湾>贡湖>西部沿岸>东部沿岸.东太湖和竺山湾属重度污染区,南部沿岸属中度污染区,梅梁湾属轻度污染区,贡湖、西部沿岸、东部沿岸属清洁区.

3.2 有机污染指数评价

综合污染指数评价法将选用的评价参数TN、TP综合成一个概括的指数值来表征底泥污染程度,其相对于单一指数法而言具优越性,是综合信息输出[31].

综合污染指数法忽略了OM指标,所以本文用有机污染指数法[25]对太湖湖滨带底泥污染现状进一步评价,使评价结果更完善.

式中: OC为有机碳,%;ON为有机氮,%.

太湖湖滨带各分区底泥有机污染评价结果见表3,太湖底泥有机指数评价标准见表4.

表3 太湖湖滨带各分区底泥有机污染评价Table 3 Organic pollution assessment for the sediments in lakeside zones of Taihu Lake

表4 太湖底泥有机指数评价标准[32]Table 4 Assess standards of organic index in sediments of lakeside zones of Taihu Lake

由表 4各分区平均有机污染指数绘出有机污染分布图(图6).从图6可见各分区有机污染分布情况:东太湖>竺山湾>南部沿岸>梅梁湾>贡湖>西部沿岸>东部沿岸.根据表4的评价标准,东太湖属有机污染区,其它湖区除竺山湾属尚清洁湖区外,都属较清洁湖区.

有机指数评价结果与综合污染指数评价结果一致,均显示东太湖湖滨带底泥氮磷污染及有机污染属重污染区,但在实际调查过程中发现,东太湖湖滨区是各区中水质环境最好的区域,如2.1所述,东太湖水生植物越来越多,水生植物及藻类残体沉降是东太湖营养盐负荷的的主要来源.其次是竺山湾.其污染严重的原因主要是外源输入,生活污水、工业废水及农业面源排放随入湖河流注入太湖,且受太湖东南风影响,污染物不易扩散,从而使藻类大量生长积聚,导致该区污染严重,蓝藻频生,因此,控制外源贡献仍是竺山湾污染控制的重要对象.

4 结论

4.1 太湖湖滨带底泥中 OM 为 1.42%~9.96%,空间变化趋势为东太湖>竺山湾>梅梁湾>东部沿岸>南部沿岸>贡湖>西部沿岸;TN 含量在458~ 5211mg/kg间,空间变化趋势为东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸;TP含量变化在 128.6~1392.16mg/kg间,空间变化趋势为竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸,其空间分布与OM、TN不同,最大值出现在竺山湾,其原因可能竺山湾处于下风向,易于藻类堆积、形成底泥还原环境,从而使该区成为重污染区.

4.2 太湖湖滨带底泥中TN含量与OM含量极显著正相关(r=0.903, P<0.01),TP含量与OM之间弱相关(r=0.073, P<0.332).用污染指数法与有机指数评价法对太湖湖滨带表层底泥的分析表明,太湖湖滨带底泥环境质量整体较好,N、P污染除东太湖和竺山湾属重度污染外其他各区属轻中度污染;有机污染除东太湖外大部分区域属较清洁区.

[1] 朱元容,张润宇,吴丰昌.滇池沉积物中氮的地球化学特征及其对水环境的影响 [J]. 中国环境科学, 2011,31(6):978-983.

[2] 张 雷,郑丙辉,田自强.西太湖典型河口区湖滨带表层沉积物营养评价 [J]. 环境科学与技术, 2006,29(5):4-7.

[3] David Pearson. From wasteland to wetland [J]. Eco. Design, 2000,8(2):12-14.

[4] 郭来喜.中国生态旅游-可持续旅游的基石 [J]. 地理科学进展, 1997,16(4):1-10.

[5] 2008年太湖健康状况报告.[EB/ OL]. http://news.h2o-china. com/html/2010/04/.

[6] 邓建才,陈 桥,翟水晶,等.太湖水体中氮磷空间分布特征及环境效应 [J].环境科学, 2008,29(12):3382-3386.

[7] 金相灿,姜 霞,徐玉慧,等.太湖东北部沉积物可溶性氮、磷的季节性变化 [J]. 中国环境科学, 2006,26(4):409-413.

[8] 赵兴青,杨柳燕,于振洋,等.太湖沉积物理化性质及营养盐的时空变化 [J]. 湖泊科学, 2007,19(6):698-704.

[9] 雷泽湘,徐德兰,谢贻发,等.太湖水生植物氮磷与湖水和沉积物氮磷含量的关系 [J]. 植物生态学报, 2008,32(2):402-407.

[10] 张明礼,杨 浩,林振山,等.太湖竺山湾底泥中有害物质含量与环境污染评价 [J]. 中国环境科学, 2011,31(5):852-857.

[11] 中国土壤学会.土壤农业化学分析方法 [M]. 北京:中国农业科技出版社, 1999:22-26.

[12] 余 辉,张文斌,卢少勇,等.洪泽湖表层底质营养盐的形态分布特征与评价 [J]. 环境科学, 2010,31(4):961-968.

[13] 谭 镇.广东城市湖泊沉积物营养盐垂直变化特征研究 [D].广州:暨南大学, 2005.

[14] 李文朝.东太湖沉积物中氮的积累与水生植物沉积 [J]. 中国环境科学, 1997,17(5):418-421.

[15] 陈 雷,远 野,卢少勇,等.环太湖主要河流入出湖口表层沉积物污染特征研究 [J]. 中国农学通报, 2011,27(01):294-299.

[16] 秦惠平,焦 锋.东太湖缩减围网后的水质分布特征探讨 [J].环境科学与管理, 2011,36(5):51-55.

[17] 杨再福,施炜刚,陈立侨,等.东太湖生态环境的演变与对策 [J].中国环境科学, 2003,23(1):64-68.

[18] 徐德兰,雷泽湘,韩宝平.大型水生植物对东太湖河湖交汇区矿质元素分布特征的影响 [J]. 中国生态环境学报, 2009, 18(5):1644-1648.

[19] 倪兆奎,李跃进,王圣瑞,等.太湖沉积物有机碳与氮的来源 [J].生态学报, 2011,31(16):4661-4670.

[20] 袁旭音,陈骏,季峻峰,等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应 [J]. 沉积学报, 2002,20(3):427-434.

[21] 陈如海,詹良通,陈云敏,等.西溪湿地底泥氮磷和有机质含量竖向分布规律 [J]. 中国环境科学, 2010,30(4):493-490.

[22] Calmano W Ahlf, Forstner U. Sediment quality assessment: chemical and biological approaches[C]. Calmano W Ahlf, Forstner U,eds. Sediment and Toxic Substances: Environmental Effects and Ecotoxity . Berlin: Springer, 1995:1-36.

[23] 吴 明,邵学新,蒋科毅.西溪国家湿地公园水体和底泥 N-P营养盐分布特征及评价 [J]. 林业科学研究, 2008,21(4):587-591.

[24] Leivuori M, Niemisto L. Sedimentation of trace metals in the Gulf of Bothnia [J]. Chemosphere, 31(8):3839-3856.

[25] 李任伟,李 禾,李 原,等.黄河三角洲沉积物重金属氮和磷污染研究 [J]. 沉积学报, 2001,19(4):622-629.

[26] 魏琳瑛,卜献卫.六横大岙附近海域环境质量现状评价 [J]. 东海海洋, 1991,17(1):66-71.

[27] 方宇翘,裘祖楠,马梅芳,等.河流底泥污染类型标准的制定 [J].环境科学, 1989,10(1):27-30.

[28] 岳维忠,黄小平,孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价 [J]. 海洋与湖沼, 2007,38(2):111-117.

[29] 王苏民,窦鸿身.中国湖泊志 [M]. 北京:科学出版社, 1998.

[30] 范志杰.浅谈海洋沉积物标准的几个问题 [J]. 交通环保, 1999,20(1):21-25.

[31] 丁 静.太湖氮磷分布特征及其吸附-解吸特征研究 [D]. 南京理工大学,南京.2010.

[32] 隋桂荣.太湖表层沉积物中 OM-TN-TP的现状与评价 [J]. 湖泊科学, 1996,8(4):319-324.

猜你喜欢
湖滨污染区底泥
宿迁湖滨新区嶂山林场“四化”管理 抓好森林防灭火工作
关于新型底泥渗水砖可能性和实用性的探究
湖滨带生态修复:以云南昆明捞鱼河国家湿地公园为例
浅谈传染病医院给排水设计
迷人的湖滨公园
新型冠状病毒肺炎传染病区通风空调方案
河道底泥脱水固化处理处置技术的研究
南京内秦淮河中段底泥的污染与再利用
郑州市不同污染区主要绿化树种对土壤重金属的富集能力研究
污染区环境质量监测的报告分析