随着工业经济发展和老城区改造,土地增量需求和土地稀缺的矛盾日趋凸显,违法用地事件不断出现,有效配置清浦区的土地资源,满足经济可持续发展的需要,成为清浦土地管理者迫切需要破解的难题。本文通过AHP分析法梳理分析清浦土地管理影响因素和解决问题有效路径,并提出相关对策建议。
清浦区地处江苏省北部,是淮安市主城区的重要组成部分。清浦古称清江浦,秦时置县,已有2200多年历史,古时即是国家漕运枢纽、盐运要冲,曾与扬州、苏州、杭州并称运河沿岸“四大都市”。全区土地总面积241平方公里,总人口31万人。随着经济发展和老城区改造对土地需求量的不断增长,土地资源稀缺的刚性约束越来越明显,土地供应与需求的矛盾日益尖锐,土地管理工作的难度越来越大。如何有效配置好清浦区有限的土地资源,满足经济可持续发展的需要,成为土地管理者关注的课题。
1 土地管理影响因素模型构建
1.1 层次分析法基本思想
层次分析法(AHP分析法)是美国运筹学家T.L.Saaty提出的多准则决策方法,运用在社会经济决策分析中效果显著。其基本思路是将影响决策系统的各变量按隶属关系排序,梳理影响决策变量的递进层次结构逻辑关系,构建影响决策变量重要性判断矩阵并计算影响决策变量的重要性。
1.2 建立决策分析指标体系
对影响决策问题的变量分解并构造出有层次递进关系结构的模型,即将影响决策所有变量分组并建立对应指标体系。结构模型一般包括三个层次:最高层(目标层);中间层(也称决策层、准则层、约束层),包括所需考虑的准则、子准则;最低层(也称要素层)包括实现目标或解决问题的措施、政策或决策方案。
1.3 构造判断矩阵标度
通常采用Saaty的1-9值标度法对影响决策因素进行比较得到量化标度。
1.4 构造决策因素重要性判断矩阵
表中bij表示对于A层而言,因素Bi与BJ相比的重要性判断值,通过A层所属因素两两相比较,得到因素重要性判断矩阵,计算最大特征值及对应的特征向量,就得到影响因素指标的重要性权重。
1.5 计算因素判断矩阵一致性指标C.I
首先,确定各因素判断系数在各列中的比重 cij=;
其次,计算判断系数比重各行之和在全部比重的份额 di= ;
再次,确定判断矩阵最大特征值对应特征向量矩阵E及最大特征值;
最后,计算因素判断矩阵一致性指标C.I;C.I=
1.6 一致性检验
一致性比例C.R是将因素判断矩阵一致性指标C.I与Saaty用随机方法构造500个样本矩阵推算出的R.I数值对比得到的。C.R=
检验结果C.R<0.1时,判断矩阵通过一致性检验,影响因素权重可信;C.R≥0.1时,判断矩阵没有通过一致性检验,需要对判断矩阵调整,直到通过检验。
2淮安清浦土地管理实证
2.1 节约型农业发展路径梳理
根据Saaty理论,影响清浦土地资源因素归类为:市场因素、制度因素和环境因素。鉴于清浦土地管理实际工作情况和指标获取的可能,对影响因素作如下界定:市场因素包括经济增长方式、土地需要量及土地供应量等因素;制度因素包括地方预算制度构成、土地法规完善度、土地法规执行刚度和土地违法行为查处力度等因素;环境因素包括土地使用文化与意识和土地使用方式与行为因素。
2.2 构造路径层次分析图
根据层次分析法(AHP分析法)分析模型要求建立层次分析图。
清浦区土地管理路径层次图
2.3 数据来源及判断矩阵构造
判断矩阵数据资料来源于对清浦从事土地管理的工作者、土地使用者和从事土地问题研究的学者进行问卷调查所得。将调查数据整理形成构造判断矩阵所需基础数据。
注:M为目标层,M1为市场因素,M2为制度因素,M3为环境因素
最大特征根的特征向量:EM=[0.6