姚庆六
(南京财经大学应用数学系,江苏 南京 210003)
一类奇异半正三阶两点边值问题的正解
姚庆六
(南京财经大学应用数学系,江苏 南京 210003)
研究了一类奇异三阶两点边值问题的正解存在性,其中非线性项可以在t=0,t=1处奇异,并且有一个函数型下界.通过考察非线性项在无穷远处的极限增长函数的积分,并且利用锥上的Krasnosel'skii不动点定理证明了一个新的存在定理.
非线性常微分方程;边值问题;正解;不动点定理
三阶常微分方程与流体力学有着密切关系.例如它可以用于考察变动截面梁的形变,也可用于研究电磁波或者重力流等[1-2].当f(t,u)为连续函数时,问题(P)的可解性已经被研究过[3].新近,文献[4]在f(t,u)=a(t)g(u),g(u)连续而a(t)在t=0,t=1处奇异的情况下考虑过另一类三阶两点边值问题的正解存在性.不过当f(t,u)在t=0,t=1处奇异时,现有文献中尚无问题(P)的任何存在性结论.本文将在更为一般的假设(H1)—(H3)下考察问题(P)的正解存在性.非线性三阶边值问题的有关工作还可参见文献[5-11].
[1] GREGUS M.Third order linear differen-tial equations[M].Dordrecht:Math Appl Reidel,1987:20-101.
[2] BERNIS F,PELETIES L A.Two problems from draining flows involving third-order ordi-nary differential equations[J].SIAM J Math Anal,1996,27:515-527.
[3] 姚庆六.三阶常微分方程的某些非线性特征值问题的正解[J].数学物理学报,2003,23A:513-519.
[4] LI S.Positive solutions of nonlinear singu-Lar third-order two-point boundary valueproblem[J].J Math Anal Appl,2006,323:413-425.
[5] YAO Q.Successive iteration and positive solution for a discontinuous third-order boundary value problem[J].Comput Math Applic,2007,53:741-749.
[6] EL-SHAHED M.Positive solutions for nonli-near singular third order boundary value problem[J].Communications Nonlinear Science and Numerical Simulation,2009,14:424-429.
[7] 孙彦,刘立山.三阶奇异边值问题的正解[J].应用数学学报:中文版,2009,32:50-59.
[8] 许晓婕,费祥历.三阶非线性奇异边值问题正解的存在唯一性[J].系统科学与数学,2009,29:779-785.
[9] 姚庆六.一类奇异三阶两点边值问题的正解存在性与多解性[J].华东师范大学学报:自然科学版,2010(3):113-118.
[10] 姚庆六.非线性三阶两点特征值问题的一个注记[J].华中师范大学学报:自然科学版,2010,44:365-368.
[11] 姚庆六.奇异三阶两点边值问题的相伴正解[J].山东大学学报:理学版,2010,45(12):24-27.
[12] 程其骧,张奠宙.实变函数与泛函分析基础[M].第二版.北京:高等教育出版社,2003:123-162.
[13] ANURADHA V,HAI D D,SHIVAJI R.Exis-tence results for superlinear semiposi-tone BVP's[J].Proc Amer Math Soc,1996,124:757-763.
[14] 钟承奎,范先令,陈文源.非线性泛函分析引论[M].兰州:兰州大学出版社,1998,150-154.
Positive solution to a class of singular semipositone third-order two-point boundary value problems
YAO Qing-liu
(Department of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing 210003,China)
The existence of positive solution is studied for a singular third-order two-point boundary value problem,where the nonlinear term may be singular att=0,t=1and has a lower bound of function type.By considering integration of the limit growth function of nonlinear term at infinity and applying the Krasnosel'skii fixed point theorem on cone,a new existence theorem is proved.
nonlinear ordinary differential equation;boundary value problem;positive solution;fixed point theorem
O 175.8
110·44
A
1000-1832(2011)03-0023-05
2009-12-07
国家自然科学基金资助项目(11071109).
姚庆六(1946—),男,教授,主要从事应用常微分方程研究.
陶 理)