顾建军,王晓明
(1.常熟理工学院数学与统计学院,江苏常熟 215500;2.无锡工艺职业技术学院基础部,江苏宜兴 214206)
一类包含P(x)-Laplace算子的偏微分方程解的存在性
顾建军1,王晓明2
(1.常熟理工学院数学与统计学院,江苏常熟 215500;2.无锡工艺职业技术学院基础部,江苏宜兴 214206)
研究变指数Sobolev空间中一类包含P(x)-Laplace算子的非线性问题.利用变指数Lebesgue和Sobolev空间理论框架,验证Palais-Smale紧性条件,并结合山路定理和变分法证明方程弱解的存在性.
P(x)-Laplace算子;变指数空间;Palais-Smale紧性条件;山路定理
包含具变指数增长条件的算子的微分方程和变分问题在数学物理,特别是弹性力学、流体动力学中有着重要的作用[1-3].变指数Lebesgue和Sobolev空间,即Lp(x)(Ω)和Wm,p(x)(Ω)空间理论的发展推动了对这些应用的进一步研究.关于变指数空间理论可见文献[4,5].
本文考虑以下问题:
其中Ω⊂RN,(N≥3)为具光滑边界的有界区域,λ>0为实数.令m(x)=max{p1(x),p2(x)}.我们将证明在广义Sobolev空间W1,m(x)(Ω)中问题(Pλ)的非平凡弱解的存在性.在问题(Pλ)中当p2(x)≡2时,算子退化为Δp(x)u=div((|∇u|p(x)-2)∇u),该问题近十年来已被广泛地研究,并取得了一些好的结果[6-9].
下面给出一些记法及空间的定义及性质.
命题0.3[4,5]下列结论等价:
命题0.4[10]
命题0.5[4,5]
引理0.7[11](山路定理)令E为Banach空间,I∈C1(E,R),满足Palais-Smale条件,设I(0)=0,且存在实数ρ>0及u,v∈E,使得
定理1.2的证明将主要依赖于验证以下Palais-Smale紧性条件和利用山路定理.
定理2.1(验证Palais-Smale条件)
设λ满足定理2.1的条件.如{un}⊂E为一序列满足以下条件:
由于m+<h-,有Jλ(tω)→-∞.
定理1.2的证明
由山路引理Jλ(u)取得极值β>α.Jλ'(un)→Jλ'(u),所以Jλ'(u)=0,为问题(Pλ)的一个弱解,又Jλ(u)>0,所以为非平凡弱解,证毕.
令G={g∈C([0,1],E):g(0)=0,g(1)=v},其中由定理2.2命题2),∃v∈E,设
[1]Acerbi E,Mingione G.Regulary results for a class of functionals with nonstandard growth[J].Arch Rtional Mech Anal,2001,156: 121-140.
[2]Diening L.Theorical and numerical results for electrorheological fluids[D].Frieburg:University of frieburg,2002.
[3]Halsey T C.Electrorheological fluids[J].Science,1992,258:761-766.
[4]Fan X L,Zhao D.On the spacesLp(x)(Ω)andWm,p(x)(Ω)[J].J Math Anal Appl,2001,263:424-446.
[5]Kovacik O,Rakosnik J.On spacesLp(x)(Ω)andWm,p(x)(Ω)[J].Czechoslovak Math J,1991,41(4):592-618.
[6]Alves C O,Souto M A S.Existence of solutions for a class of problems involving the p(x)-Laplacian[J].Progress in Nonlinear Differential Equations and Their Applications,2005,66:17-32.
[7]Fan X L,Zhang Q H.Existence of solutions for p(x)-Laplacian Dirichlet problem[J].Non-linear Anal,2003,52:1843-1852.
[8]Fan X L,Zhang Q H,Zhao D.Eigenvalues of p(x)-Laplacian Dirichlet problem[J].J Math Anal Appl,2005,302:306-317.
[9]Zhang Q.A strong maximum principle for differential equations with nonstandard p(x)growth conditions[J].J Math Anal Appl, 2005,312:24-32.
[10]Cekic B,Mashiyev R A.Existence and localization results for p(x)-Laplacian via topological methods[J].Fixed Point Theory and Applications,2010,2010:1-7.http://www.hindawi.com/journals/fpta/2010/120646/cta/.
[11]Willem M.Minimax Theorems[M].Boston:Birkhauser,1996.
Existence of Solutions for a Class of Partial Differential Equations Involving p(x)-Laplace Type Operator
GU Jian-jun1,WANG Xiao-ming2
(1.School of Mathematics and Statistics,Changshu Institute of Technology,Changshu 215500,China; 2.Dept.of Basic Courses,Wuxi Institute of Arts&Technology,Yixing 214206,China)
This paper studies a class of nonlinear problems involving p(x)-Laplace type operator in variable exponent sobolev spaces.Our approach relies on the variable exponent theory of Lebesgue-Sobolev spaces,combined with Palais-Smale condition,mountain pass theorem and some adequate variational methods.
p(x)-Laplace operator;variable exponent spaces;Palais-Smale condition;mountain pass theorem
O175.2
A
1008-2794(2010)10-0019-05
2011-05-20
常熟理工学院青年教师科研启动基金(ky2009107)资助项目.
顾建军(1979—),男,江苏扬州人,常熟理工学院数学与统计学院讲师,硕士,研究方向:偏微分方程控制论.