吴泽九
(华东交通大学基础科学学院,江西南昌 330013)
注:推论1中的结论(1)为文献[2-3]中的结论,因此,定理1和推论1推广与改进了文献[2-3]中的结果。
因此,(21)及(28)式等号成立,且(18),(19)全变成等式。
当(19)变成等式时,由引理1,可假定λ1≠λ2=…=λn。由于Kjj-r≥0,Kii-r≥0及R-εAKAA≥0,当(18)等号成立时,有
[1]GODDARD A J.Some remarks on the existence of spacelike hypersurfaces of constant mean curvature[J].Math Z,1991,206(1):333-339.
[2]AKUTAGAWAK.On space-like hypersurfaces with constant curvature in the de Sitter space[J].Math Z,1987,196(1):13-19.
[3]RAMANATHAN J.Complete spacelike hypersurfaces of constant mean curvature in a de Sitter space[J].Indiana Univ Math J,1987,36(2):349-359.
[4]ISHIHARA T.Maximal spacelike submanifolds of a pseudo-Riemannian Space of constant curvature[J].Michigan Math J,1988,35(3):345-352.
[5]ALENCAR H,DO C M.Hypersurfaces with constant mean curvature in spheres[J].Proc Amer Math Soc,1994,120(6):1223-1229.
[6]OMORI H.Isometric immersion of Riemmanian manifolds[J].J Math Soc Japan,1967,19(2):205-214.
[7]YAU S T.Harmonic functions on complete Riemmanian manifolds[J].Comm Pure andAppl Math,1975,28(2):201-228.
[8]LI H Z.Integral formulas for compact space-like hypersurfaces in de Sitter space and their applications to Goddard’s conjecture[J].Acta Mathematica Sinica,1998,14(2):285-288.
[9]吴泽九.共形平坦Lorentz空间具常平均曲率的一类超曲面[J].华东交通大学学报,2009,26(2):102-107.