黄晓明 安德鲁 莫日和 王洪洲 林 亮
(1.中联煤层气有限责任公司,北京 100011;2.加拿大英发能源公司,安徽 235200)
安徽宿州芦岭煤矿位于淮北煤田的东南缘,矿区面积23km2,煤炭年生产能力180万t[1],矿区范围同时位于中联公司拥有探矿权的宿南煤层气勘查区块的东部 (图 1)。宿南煤层气区块面积约850km2,是我国第一个与外国公司签署的中外合作煤层气勘探开发项目,目前外方作业者为加拿大英发能源公司。本次调查工作主要集中在芦岭矿区范围内施工的一口煤层气参数+生产试验井,CLG09V-01井。该井连同与其相关的300m井间距的生产井组已于2010年4开始进入煤层气排采试验阶段。
图1 安徽宿州地区煤层气勘探开发形势图
芦岭矿区位于淮北煤田东南缘,北界为东西向的宿北断裂,南部靠近板桥断裂,这两条东西走向、倾向相向的同生正断层构成了一个区域性的地堑,对矿区的煤系地层沉积起到控制作用。芦岭煤矿东界为一北西向的逆断层,对煤系地层起到明显的改造和控制作用,矿区呈北西向展布,地层北倾,使其在淮北煤田具有鲜明的构造特点。煤田东部逆冲推覆构造发育,从东向西呈叠瓦式推覆,矿井下常见层滑小构造,对采煤有较大影响。矿区周边燕山期火山作用较为频繁,主要表现为酸性火成岩侵入体,多以岩床、岩株和岩脉的形式侵入到古生界沉积地层中。其中,下二叠统山西组地层受岩浆接触变质和岩浆热力变质作用明显,煤质变化大,煤类复杂,以贫煤、无烟煤、天然焦为主。然而,岩浆作用主要发生在宿北断裂以北地区。芦岭矿区受岩浆岩侵入体的影响较小,煤变质程度相对不高,以气煤为主。
芦岭矿区所处的两淮地区在沉积地层上属于南华北地层分区,晚古生界地层为一套三角洲体系和多重障壁体系交替沉积,含多层可采煤层。根据沉积旋回和岩性组合特征,将地层自下而上划分为本溪组、太原组、山西组、下石盒子组、上石盒子组和石千峰组。CLG09V-01井是在芦岭矿区施工的一口煤层气参数+生产试验井,钻井位置见图1。该井所钻揭的地层主要包括石炭系太原组地层、二叠系山西组和上、下石盒子组地层,以及约250m厚的新生界松散地层。本文着重讨论与主要目的煤层相关的下二叠统煤系地层的岩性组合特点 (图2)。
从图2中可以看出,山西组10#煤层的电性特征明显,结构稳定,厚度为2.69m。其直接底板为砂质泥岩,厚3.38m,含水性弱,渗透性较差。其下部紧邻地层到石炭系太原组灰岩顶界之间为厚层状的粉细砂岩和砂质泥岩间互,表现为高伽马和中高电阻率特征,弱含水,渗透性好于煤层底板。10#煤的直接顶板为6.08m厚的细砂岩,纯净且渗透性较好。传统的煤层气地质理论认为,渗透性好的煤层顶、底板不利于煤层气的保存。然而根据我们多年的煤层气地质勘探实践发现,较好的渗透性有利于煤层气的排出,从而促进了煤层气的大量生成,有效的提高了煤储层的煤层气含气饱和度,这点在本文后面的讨论中再次得到印证。
图2 宿南煤层气区块芦岭矿区CLG09V-01井实钻地层剖面
下石盒子组地层中包含了两套主要目的煤层。8#煤层厚达9.19m,但井身结构不稳定,煤芯破碎,扩径明显。直接顶、底板为砂质泥岩,含水性弱,渗透性较差。但其上部紧邻地层为10m厚的细砂岩 (图2),渗透性好,若因断层错断导致煤层与该渗透层直接接触,可有效的提高煤层的排烃效率,从而提高煤储层的煤层气含气饱和度。7#煤层厚2.36m,顶、底板为泥岩,含水性弱,渗透性差,内生裂隙发育,具有较好的煤层气渗流通道,但煤层顶、底板的封闭性在一定程度上影响了其生烃效率。
CLG09V-01井区的上、下石盒子组地层分界在井深510m处,以紫斑状铝质泥岩为地层划分标志层。上石盒子组地层由紫、黄绿和杂色砂岩、粉砂岩和泥岩互层组成。在宿南煤层气区块其它地区较为发育的3#煤层,在本井区不发育。
7#煤煤岩成分以亮煤为主,暗煤次之,内生裂隙发育,煤芯呈块状,玻璃光泽,断口呈阶梯状,网状结构。煤显微组分含量:镜质组为78.9%,惰质组为17.4%,壳质组未见,无机组分占12.6%,镜质体反射率为0.71%。煤视密度为1.37,灰分为21.97%,挥发份为37.84%,固定碳含量为83.55%。
8#煤煤岩成分由亮煤和暗煤组成,宏观类型为半亮型煤,条痕为黑灰色。煤芯十分破碎,以至于裂隙无法描述,少部分小碎块断口为参差状,呈线理状构造。煤显微组分含量:镜质组为76.2%~85.5%,惰质组为12.0%~19.5%,含微量壳质组成分,镜质体反射率为0.76%~0.83%。无机组分含量不高,平均为7.6%,一般为分散状粘土,个别呈层状或侵染状形态。煤视密度为1.32~1.38,灰分为11.72%~16.78%,挥发份为31.08%~33.74%,固定碳含量为 84.88%~85.84%。
10#煤煤岩成分以亮煤为主,暗煤次之,宏观类型以半亮型煤为主,内生裂隙十分发育,裂隙面光滑平整,面裂隙40~42条/5cm,端裂隙28~32条/5cm。煤芯呈块状,条痕为灰黑色,呈金属光泽和玻璃光泽,断口参差状,具孤立网状结构,裂隙被黄铁矿部分充填。煤显微组分含量:镜质组为76.3%~88.1%,惰质组为10.0%~18.8%,壳质组为1.95%~5.0%,无机组分占2.2%~16.2%,镜质体反射率为0.83%~0.90%。煤视密度为1.36,灰分含量平均为10.05%,挥发份平均为36.69%,固定碳含量为82.57%~85.57%。
图3 宿南煤层气区块芦岭矿区CLG09V-01井煤芯样品等温吸附曲线
7#煤的两个煤芯解吸测试结果表明,其空气干燥基含气量为6.10~6.68m3/t;干燥无灰基含气量为7.30~8.00m3/t,吸附时间变化在4.60~4.67天,平均 4.64天。气体成分以甲烷为主,占96.67%~96.82%,氮气含量2.92%~2.96%,重烃含量极微。等温吸附实验表明,7#煤的原煤饱和吸附量为12.87cm3/g,干燥无灰基饱和吸附量为16.71cm3/g,兰氏压力为2.21MPa。从等温吸附曲线上可以看出 (图3),原煤等温吸附曲线平缓,干燥无灰基曲率变化明显。
8#煤的18个煤芯解吸测试结果表明,其空气干燥基含气量为8.05~9.85m3/t;干燥无灰基含气量为9.49~11.26m3/t,吸附时间变化在 1.34~2.35天,平均2.08天。气体成分以甲烷为主,占94.10%~98.25%,氮气含量0.65%~4.87%,重烃含量0~0.39%。等温吸附实验表明,8#煤的原煤饱和吸附量范围14.89~17.01cm3/g,干燥无灰基饱和吸附量范围18.18~20.12cm3/g,兰氏压力平均为2.35MPa。从图3中可以看出,8#煤等温吸附性与7#煤相比,其原煤曲线和干燥无灰基曲线相近,曲率变化明显增大。
10#煤的4个煤芯解吸测试结果表明,其空气干燥基含气量为7.28~8.69m3/t;干燥无灰基含气量为8.82~10.42m3/t,吸附时间变化在 1.37~2.50天,平均1.95天。气体成分以甲烷为主,占94.10%~95.79%,比前述两组煤层的甲烷含量略低,氮气含量变化在3.92%~5.41%,重烃含量0.06%~0.11%。等温吸附实验表明,10#煤的原煤饱和吸附量范围为11.44~15.09cm3/g,干燥无灰基饱和吸附量范围为15.91~16.29cm3/g,兰氏压力为2.04MPa。从等温吸附曲线上可以看出 (图3),较前述两组煤层其原煤曲线和干燥无灰基曲线形态最为接近,曲率相对较大。
芦岭矿区下二叠统地层主要包含3层可采煤层,分别为下石盒子组的7#煤和8#煤,以及山西组的10#煤。煤层单层厚度较大。煤变质程度相对不高,但随埋深略微增高,煤类以气煤为主。受构造作用影响明显,煤层内部裂隙十分发育。煤显微组成以较高的镜质组含量,和较低的惰质组含量为显著特征。煤层气含气量中等偏高,甲烷含量高,重烃含量低。主要目的煤层的原煤饱和吸附量普遍偏低,但含气饱和度不低。下部煤层的煤层气解吸速率要高于上部煤层。
从前述CLG09V-01井的地层发育特征描述中我们可以看出;7#煤层的顶底板为泥岩,渗透性极差,按传统的煤层气地质观念来讲,其对煤层气具有较好的保存条件。然而,从煤层气生成的角度来看,较强的封闭性不利于煤层气的排出,反而会抑制煤层气的大量生成。所幸的是,7#煤层不厚且其内部裂隙十分发育,煤层气的生成才得以持续发生,因此煤层气含气饱和度并不低。7#煤相对较低的含气量与其吸附特性和煤的热变质程度相对较低有关。8#煤层的顶底板为砂质泥岩,渗透性相对较好。然而厚度近10m的煤层却成为其内部煤层气有效排出的障碍,降低了部分煤芯样品的含气饱和度。10#煤层的顶底板为细砂岩,渗透性好,且煤层厚度适中,煤层受热变质程度最高,因此,煤层作为烃源岩其煤层气得以充分生成并持续排出,同时煤层作为储层其煤层气含气饱和度达到并超过100%。
通过以上分析结合煤层的等温吸附特性,我们可以看出:CLG09V-01井山西组的10#煤层具有煤层结构稳定,内生裂隙十分发育,煤层气含气饱和度高,等温吸附曲线曲率大,兰氏压力低的特点,在三个主要目的煤层中,其生产条件最好,初期产量应该最高。8#煤和7#煤也具有裂隙发育,含气饱和度高的特点,生产条件也是比较好的,特别是8#煤层巨厚,是煤层气能够持续高产稳产的保证。7#煤的等温吸附曲线最为平缓,表明解吸条件相对较差,测试数据也表明其解吸天数是最多的,此外,其兰氏压力也较大,而兰氏体积相对不高。
另外,有煤田地质工作者在进行煤层气资源可采性评价工作中,将较高的惰质组显微组分含量作为煤层气可采性最为有利的指标。CLG09V-01井的煤芯样品分析结果表明,本井煤样中惰质组含量相对沁水盆地等要低,但其对生产条件的影响到底有多大,还需更多的实际资料加以验证,至少在本井区看不出有多大影响。本井区三套主要目的煤层煤样品分析结果表明,三层煤的惰质组组分含量几无差别,均普遍偏低,但煤层气解吸时间却相差较大,7#煤解吸时间要比8#煤和10#煤高一倍多,10#煤解吸时间最短。可见,惰质组组分含量不是影响芦岭矿区煤层气可采性的主要因素。
芦岭矿区所在的宿州煤层气区块已有十余年的勘探历程,商业开采也有两年以上,目前的煤层气生产井以直井为主,采取的是套管完井技术,水力压裂或部分注入氮气等增产措施。生产井持续高产稳产,实现了商业化利用。
下二叠统山西组的10#煤和下石盒子组的8#和7#煤是本区煤层气的主要气源岩和储集层。原煤镜质组含量高,中等变质程度,煤吸附能力和煤层厚度适中,顶底板条件好,有利于煤层气的生成和富集。煤储层温度高、渗透率相对较大,内生裂隙十分发育,煤层气含气饱和度高,临储压力比大,有利于煤层气的产出。
10#煤层的储层压力大,含气饱和度高,煤解吸速率高,对煤层气初期产量贡献大。8#煤层厚度巨大,煤层气资源丰富,是煤层气高产稳产的基础,但煤层受构造影响而破碎,在一定程度上影响了其初期产量。7#煤含气量低,但饱和度较高,顶底板封闭性强,使其保持了较高的原始地层能量。三层煤合采可实现优势互补,合理的控制生产节奏,就可借助7#煤和10#煤先期释放的游离气对8#煤层的渗流条件进行有效的改造,从而加快厚煤层中煤层气的持续析出。
[1] 中国主要煤矿资源图集第三卷 [R].北京:中煤地质总局,1996.
[2] 中煤地质总局,中国聚煤作用系统分析 [M]徐州:中国矿业大学出版社,2001.
[3] 黄晓明等,煤层气地质勘探实例分析 [M]苏州:石油工业出版社,2010.
[4] 吴昱,西山矿区煤层气资源可采性评价 [J]中国煤层气,2010(4).