张培国
(菏泽学院 初等教育系,山东 菏泽 274000)
抽象空间中非线性弹性梁方程的迭代解
张培国
(菏泽学院 初等教育系,山东 菏泽 274000)
运用新的比较结果和上下解方法研究抽象空间中非线性奇异弹性梁方程迭代解的存在性,得到了关于C[0,1]迭代解存在性的新结果.
Banach空间;弹性梁方程;迭代解;锥
设P是实Banach空间E中的正则锥,本文考虑E中四阶微分方程边值问题:
众所周知,四阶两点边值问题描述了弹性梁在外力作用下的形变.近年来对四阶两点边值问题的研究已有很丰富的结果,例如[1-5]及其参考文献.问题(1)描述的是一端简单支撑(t=0),另一端可滑动(t=1)的弹性梁的形变,在经典梁分析Gupta[1]中(1)是6种典型梁之一.据我们所知,现有文献在Banach空间中讨论(1)的解的存在性很少,这些文献也仅限于一般空间中讨论.本文的目的是利用新的比较结果和增算子的不动点定理,在Banach间中研究(1)解的存在性.
注1 条件(H3)说明f可以在t=0处奇异.
本文的主要结果是:
定理1 设P是Banach空间E中的正则锥,若条件(H1)~(H3)满足,则(1)在[x0,y0]中必有最小解x*和最大解x*.并且以x0,y0为初始元的迭代序列
[1]Gupta C P.Existence and uniqueness theorems for the bending of an elastic beam equation[J].Applicable Analysis,1988,26:289-304
[2]Ma R,Ling X.Existence of positive solutions of a nonlinear fourth-order boundary value problem [J].Applied Mathematics Letters,2010,23(5):537-543
[3]Yao Q.Local existence of multiple positive solutions to a singular cantilever beam equation[J].Journal of Mathematical Analysis and Applications,2010,363(1):138-154
[4]Li F,Zhang Y,Li Y.Sign-changing solutions on a kind of fourth-order Neumann boundary value problem [J].Journal of Mathematical Analysis and Applications,2008,344(1):417-428
[5]Lin X,Jiang D,Li X.Existence and uniqueness of solutions for singular fourth-order boundary value problems[J].Journal of Computational and Applied Mathematics,2006,196(1):155-161.
[6]郭大均.非线性分析中的半序方法[M].济南:山东科技出版社,2000
Iterative Solutions of Nonlinear Elastic Beam Equation in Abstract Space
Zhang Peiguo
(Department of Elementary Education,Heze University,Heze 274000,China)
By using a new comparison result and the method of lower and upper solutions,the existence of solutions is established for the singular nonlinear elastic beam equation in abstract space.A new result on the existence of C[0,1]solutions for this class of differential equations is derived.
Banach space;elastic beam equation;iterative solution;cone
王映苗】
1672-2027(2011)03-0021-04
O175.8
A
2011-03-14
菏泽学院科研基金资助项目(XY10SX01).
张培国(1970-),男,山东菏泽人,硕士,菏泽学院初等教育系讲师,主要从事非线性泛函分析及应用研究.