程玉梅
(贵州省交通规划勘察设计研究院,贵州 贵阳 550001)
混凝土桥梁结构耐久性问题是耐久性研究中的重要组成部分。桥梁建设是国家重要的基础建设之一,桥梁工程是关系到社会和经济协调发展的生命线工程。桥梁建设的快速发展,巨大的资金投入,在经济社会中的显赫作用,使得人们对桥梁的安全性、耐久性越来越重视。由于环境影响、日益增长的交通量以及公路运输业经常提倡提高汽车荷载标准,因此许多既有桥梁不能满足为设计新桥而规定的结构要求;劣化和荷载增加也导致了桥梁可靠性的降低,桥梁的可靠度最终可能降低到规定的水平之下,因此需要经常根据桥梁的安全性和耐久性作出决策。
分析混凝土桥梁130余年的发展历程不难发现,从素混凝土、钢筋混凝土、预应力混凝土、部分预应力混凝土,以至预应力钢筋混凝土,每一步都含有与混凝土耐久性作斗争的内容。
桥梁工程是一个由许多结构件组成的一个系统结构,各结构件不仅本身要有足够强度和耐久性,而且组合到整个桥梁中也要满足全桥安全性和耐久性,引起混凝土桥梁结构耐久性失效的原因存在于结构的设计、施工及维护的各个环节。以往的乃至现在的结构工程设计中,普遍存在着重强度设计而轻耐久性设计的现象。同时,不合格的施工也会影响混凝土结构的耐久性,常见的施工问题如混凝土质量不合格、钢筋保护层厚度不足都有可能导致钢筋提前锈蚀。另外,在结构的使用过程中,由于没有合理的维护而造成的结构耐久性降低也是不容忽视的,如对结构的碰撞、磨损及使用环境的劣化,这些都会使混凝土结构无法达到预定的使用年限。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。很多桥梁病害经常与施工质量低劣有关,但在承认施工存在问题的同时,也不可否认在桥梁设计领域还有许多可以改进的地方。许多设计人员往往只满足于规范对结构强度计算上的安全度需要,而忽视从结构体系、结构构造、结构材料、结构维护、结构耐久性以及从设计、施工到使用全过程中经常出现的人为错误等方面去加强和保证结构的安全性。有的结构整体性和延性不足,冗余性小;有的计算图式和受力路线不明确,造成局部受力过大;有的混凝土强度等级过低、保护层厚度过小、钢筋直径过细、构件截面过薄,这些都削弱了结构耐久性,会增加桥梁的病害。因此,合理可靠的结构设计除了满足规范要求外,还要求设计人员具有对结构本性的正确认识。丰富的经验和准确的判断。从而在设计时对桥梁整体结构全寿命使用过程进行全面综合分析和计算,提高结构的使用耐久性。
桥梁结构构造设计研究虽然比较成熟,但应引起设计人员足够的重视,避免桥梁建成后的先天性不足,在具体桥梁设计时应加强深入的分析和研究。主要包括以下几个方面的内容。
对于拉(压)杆,其主应力迹线均平行于杆件轴线,因此,传力路径等于杆件的长度。而对于纯受弯杆件,任一横截面内均有拉应力及压应力,其主拉(压)应力迹线平行于杆件轴线,其传力路径等于杆件的长度。但梁常为弯剪耦合构件,梁内任意一点均处于二向受力状态。其主应力迹线呈曲线,可见,其传力路径复杂,此时可将梁比拟为“桁架”(拉压结构),各构件传力路径之和可定义为梁的传力路径。对于弯剪扭耦合构件,可将其比拟为“空间桁架”。可见,拉(压)杆件传力路径较受弯杆件短得多,它是传力最简捷的构件。
不论是桥跨结构还是支承结构,不论是横截面内(如受弯箱梁在弯矩平面内的传力路径主要是沿腹板传递,因此,其主筋应配置在靠近腹板的范围内为好等)还是细部构造(如拱上立柱与箱拱连接处横隔板沿立柱竖向设置较径向设置传力简捷;带挂孔的悬臂梁桥采用受拉型铰较传统受压型铰施工吊装方便、牛腿的受力与梁的受力吻合,细部构造优越等),传力路径简捷、明快,是较好的形式。
合理的结构整体性好,构件体形变化平顺不仅是美观的要求,而且构件体形变化平顺、节点处或边界处过渡平顺、结构整体性强是力流平顺的必要条件,同时,也可提高结构的承载能力和刚度。
整体性和冗余性可以保证桥梁在运营状态下具有良好的使用性能及对局部损伤和破坏具有适当的抵抗能力,这些特点有利于结构抵抗诸如超载、地震等荷载。由于桥梁的伸缩缝长期暴露在大气中,使用环境比较恶劣,是桥梁结构中最易遭到破坏而又较难以修补的部位。桥梁伸缩缝在设计、施工上稍有缺陷或不足,就会引起其早期破坏;而桥梁伸缩缝的破坏,又可能引起很大的车辆冲击荷载,恶化行车状况,急剧降低桥梁使用寿命。世界各国的学者都在努力寻求最好的伸缩缝结构,得到的结论是“最好的伸缩缝结构是无伸缩缝”。近年来,国外日益强调通过减少甚至取消桥梁接缝(伸缩缝)和支座来保证桥梁的整体性和适用性,同时可以减少后期的维护费用。美国等国家已经修建了一些没有支座和伸缩缝的整体式桥梁,使用情况良好。此外,已经有越来越多的人开始研究整体式桥梁的可行性。
人们有一个习惯的误解,认为桥梁属于永久性建筑,它的设计基准期为100年,那么在100年内就不应该出现部件的损坏与更换。实际上桥梁整体结构的寿命和结构各个部件的寿命是不等的,如橡胶支座的寿命一般在20年左右,钢拉索的寿命约10年~50年,钢结构油漆保护寿命约为20年,因而对这些寿命期低于结构寿命期的部件必须做到可检查、可维修、可更换。原苏联对其桥梁各组成部件统计的平均服务年限,有的长达百年以上,有的仅数年。桥梁构件达到使用寿命期而损坏,管理单位就应进行正常的更换,不能因未及时更换而引起或加速主要承重构件的损坏而影响桥梁的整体耐久性。
20世纪末北京的西直门立交桥重建,在旧桥拆除时发现的病害十分严重,其中橡胶支座老化结硬,以致承台破裂。不论是桥梁的永久构件或需要中期更换的构件,都应该能让检查人员容易到达、进行检查和耐久性维护。桥梁设计时就应该为此创造必要的条件,如为更换支座应在盖梁上预留有放置千斤顶等提升设备的空间,也应为工作人员留有操作平台;否则将大大增加后期维护的困难和费用。国内很多桥梁设计中没有考虑构件更换的需要,甚至没有设置检查所需的通道。
防止桥面雨水等对主梁和墩台的侵蚀是减少桥梁病害和保证桥梁耐久性的基本要求之一,良好的构造措施是实现这一要求的根本。特别是对于我国北方利用撒盐进行桥面除冰的地区,应特别注意在桥梁设计中处理好桥梁防水、隔水的问题,以阻止可能引起钢筋严重锈蚀的盐水的侵蚀。现阶段关于结构耐久性的系列研究还在进行,耐久性设计的很多问题不会在短期内研究彻底,也不会很快制定出系统、适用的规范和方法。本文从结构设计的角度探讨了保证桥梁耐久性的一些设计原则,希望以后的桥梁设计不仅要满足现行规范关于强度和变形方面的要求,还应该考虑耐久性对于体系和构造上的要求;同时桥梁耐久性的研究不能将太多的精力集中在材料耐久性退化机理上,从构造和体系上研究桥梁耐久性的设计方法应引起人们的足够重视。
[1]卫军,张晓玲,赵霄龙.混凝土结构耐久性研究现状和发展方向[J].低温建筑技术,2003(5):9.
[2]金伟良,赵羽.-j.混凝土结构耐久性[M].北京:科学出版社.2O02:7-25.
[3]牛获涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社.2003:2-14.
[4]黄贤增,余小江.混凝土结构耐久性设计的一些建议[J].山西建筑,2008,34(31):91-92.