吴珞
一类修正Navier-Stokes方程解衰减速率的上下界估计
吴珞
(上海第二工业大学理学院,上海 201209)
Navier-Stokes方程描述了具有小速度梯度的不可压缩粘性流体运动规律,在流体动力学研究中有着重要的应用。1966年,Ladyzhenskaya O. A. 放弃了速度梯度很小的限制,提出了几种描述不可压缩粘性流体运动规律的修正Navier-Stokes方程。为估计整个三维空间上一类修正Navier-Stokes方程解衰减速率的上下界,使用改进的Fourier分解方法得到当初值模衰减速率上界为;对某些初值时,解的模衰减速率下界为(t+1)−34。
修正Navier-Stokes;大时间行为;衰减率;上界;下界
文献[1]和[2]独立研究了不可压缩粘性流体运动规律,提出了描述速度梯度较小的流体运动规律的经典Navier-Stokes方程。1966年,文献[3]和[4]放弃了流体速度梯度较小的限制,给出了几种修正Navier-Stokes方程,其中之一形式如下
的修正Navier-Stokes方程问题。当初值满足一定条件,n≤3时,该问题存在整体唯一解[5-8]。
文献[9]首先提出了经典Navier-Stokes方程解的衰减估计问题。文献[10]讨论了小初值解的衰减估计问题。1985年和1986年,文献[11-13]利用Fourier分解方法给出整个空间经典Navier-Stokes方程解的衰减估计,证明当初始值u∈L2∩Lq(1≤q <2)时,解的L2模,并且给出了解的衰减下界估计。1991年,文献[14]讨论了带权空间上解的衰减下界估计。之后,有一系列这方面的研究成果出现,例如文献[15-23]。
有关修正Navier-Stokes方程解的衰减估计问题研究不多。文献[24,25]使用Fourier分解方法研究了文献[3]和[4]提出的另一类修正Navier-Stokes方程解的衰减估计问题,其方程为
其中∇u(τ)为∇u(τ)的L2模。本文将使用Fourier分解方法研究三维空间上一类修正Navier-Stokes方程(1)~(4)解的衰减估计,将证明当初值(1≤p<2)时,问题(1)~(4)解的L2模,对某些初值。
本文的第1节将回顾记号、定义和结论。在第2节,我们将讨论修正Navier-Stokes方程问题解的衰减上界。在第3节,我们将给出解的衰减下界估计。
在本文中,我们假设n=3且f=0。为了书写方便,取μ0=1,μ1=1。
为证明上述定理,我们给出以下两个引理:
引理2.2[12]设,1≤p<2,r( t)>0,则
引理2.3设u是问题(1)~(4)的解,则
证明在(1)两边做Fourier变换得到
证毕。
证明定理2.1由(1)和(2)知
为了估计修正Navier-Stokes方程问题(1)~(4)解的衰减下界,我们记w=u−v=u−,则
证明证明与引理2.3相似。
成立。
证明定理3.1由(18),使用(5)和(6)知
与证明(15)相似,我们可证:对任取r( t)>0,
为估计(20),我们回顾文献[13]中的一个不等式
在(20)中应用引理3.2,定理3.1,(7)和(21),我们可推出
当外力f=0时,三维空间上一类修正Navier-Stokes方程解衰减速率有上下界。当初值(1≤p<2)时,解的L2模的衰减速率上界为;对某些初值)时,解的L2模的衰减速率下界为。当外力随时间无限增大时有一定衰减速率,应用本文方法易知修正Navier-Stokes方程解有相同的上下界。
[1] NAVIER C L M H. On the laws of motion of fluids taking into consideration the adhesion of the molecules[J]. Ann.Chim.Phys. ,1822,19:234-245.
[2] STOKES G H. On the theories of the internal friction of fluids in motion[J]. Trans.Cambridge Phil.Soc. ,1845,8:287-319.
[3] LADYZHENSKAYA O A.On certain nonlinear problems of the theory of continuous media[C] // s. n. . Internat.Congress of Mathematicians. Moscow:s. n. ,1966:149.
[4] LADYZHENSKAYA O A.The Mathematical Theory of Viscous Incompressible Flow[M]. New York: Gordon and Breach,1969.
[5] LADYZHENSKAYA O A.On new equations for the description of the motion of viscous incompressible fluids, and the global solvability of their boundary value problems[J]. Trudy Mat.Inst.Akad.Nauk SSSR,1967, 102:85-104.
[6] LADYZHENSKAYA O A.On modifications of the Navier-Stokes equations for large gradients of velocities[J]. Zap.Nauchn.Sem.Leningr.Otd. Mat.Inst. , 1968, 7:126-154.
[7] LADYZHENSKAYA O A. The Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid (in Russian)[M]. Moscow: Nauka, 1970. [8] LIONS J L.Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[M]. Paris: Gauthier Villars, 1969.
[9] LERAY J. Essai sur le mouvement d'un liquide visqueux emplissant l'espace[J]. Acta Math. , 1934, 63:193-248.
[10] KATO T. Strong Lpsolutions of the Navier-Stokes equations with applications to weak solutions[J].Math.Zeit. , 1984, 187:471-480.
[11] SCHONBEK M E.L2decay of weak solutions of the Navier-Stokes equations[J]. Arch.Rational Mech.Anal. , 1985, 88, 209-222.
[12] SCHONBEK M E. Large time behaviour of solutions to the Navier-Stockes equations[J]. Comm.Partial Differential Equations, 1986, 11(7):733-763.
[13] KAJIKIYA R,MIYAKAWA T. On L2decay of weak solutions of Navier-Stokes equations inRn[J]. Math.Z. , 1986, 192:135-148.
[14] SCHONBEK M E. Lower bounds of rates of decay for solutions of the Navier-Stockes equations[J]. J.Amer.Math.Soc. , 1991, 4:423-449.
[15] ZHANG L. Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equation[J]. Comm.Partial Differential Equations, 1995, 20:119-127. [16] CARPIO A. Large time behavior of incompressible Navier-Stokes equations[J]. SIAM J.Math.Anal. , 1996, 27:449-475.
[17] OGAWA T. Energy decay for a weak solution of the Navier-Stokes equation with slowly varying external forces[J]. J.Funct.Anal. , 1997, 144:325-358.
[18] CHEN Z M,MIYAKAWA T.Decay properties of weak solutions to a perturbed Navier-Stokes systems in Rn[J]. Adv.Math.Sci.Appl. , 1997, 7:741-770.
[19] TAKAHASHI S. A weighed equation approach to decay rate estimates for the Navier-Stokes Equations[J].Nonlinear Anal. , 1999, 37:751-789.
[20] OLIVER M. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in Rn[J]. J.Funct.Anal. , 2000, 172:1-18.
[21] HE C,XIN Z P. On the decay properties of solutions to the nonstationary Navier-Stokes equations in R3[J]. Proc.Royal.Soc.Edinb: Sect A, 2001, 131:597-619.
[22] BAEA H O, JIN B J. Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations[J]. J.Differential Equations, 2005, 209:365-391.
[23] KUKAVICA I. Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations[J].Nonlinearity, 2006, 19:293-303.
[24] 董柏青, 李用声. 一类修正的Navier-Stokes方程的长时间性态[J]. 数学物理学报, 2006, 26(A)(4):498-505.
[25] DONG B Q, JIANG W. On the decay of higher order derivatives of solutions to Ladyzhenskaya modelfor incompressible viscous flows[J]. Science in China, Series A: Mathematics, 2008, 51:925-934.
[26] TEMAM R. Navier-Stokes equations,theory and numerical analysis[M]. New York: North-Holland Amsterdam, 1977.
Upper and Lower Bounds of Decay Rates for a Solution of a Modified Navier-Stokes Equations
WULuo
(School of Science,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China)
The Navier-Stokes equations have many important application in fluid dynamic,which describe motion characteristics of viscous incompressible fluids for small gradients of the velocities.In 1966,Ladyzhenskaya O.A.suggested several variants of modified Navier-Stokes equations to a determinate description of the nonstationary flows of viscous incompressible fluids for large gradients of the velocities.Forestimating upper and lower bounds of decay rates for a modified Navier-Stokes equations in the whole three-dimensional space,by improving the Fourier splitting methods,the paper proves that upper bounds of decay rates of L2norm to the solution arefor initial value(1≤p<2) and lower bounds of ones arefor some initial value
modified Navier-Stokes equations;large time behavior;decay rate;upper bounds;lower bounds
O175.2
A
1001-4543(2010)03-0173-05
2010-06-03;
2010-06-29
吴珞(1963—),男,辽宁辽阳人,教授,博士,主要研究领域为应用数学,电子邮件:wuluo@sspu.cn
上海市自然科学基金(No.09ZR1412800);上海市教育委员会科研创新项目基金(No.10ZZ131)