隧道岩体稳定性的非线性单元安全系数分析

2010-05-31 06:10喻言柳群义冯德山
关键词:库仑巴顿节理

喻言,柳群义,冯德山

(1. 武汉理工大学 土木工程与建筑学院,湖北 武汉,430070;2. 中南大学 信息物理工程学院,湖南 长沙,410083)

岩体稳定是隧道工程施工的基本要求[1-2],目前,主要采用经验判定标准对岩体进行分级,并采用数值计算结果如塑性区和应变区对岩体稳定情况进行分析。但是,这些方法只能用于判断岩体是否被破坏,却无法定量地反映岩体的破坏程度,为此,一些研究者[3-7]引入工程中安全系数的概念,建立了岩体的单元安全系数评价方法,如:李树忱等[3]利用摩尔库仑和Drucker-Prager强度准则,建立基于单元的安全系数法,给出了围岩稳定的安全范围;张黎明等[4]基于Drucker-Prager准则,在仅考虑岩体剪切破坏情况下,利用有限元求安全系数与潜在破坏面,探讨了强度折减法在隧道稳定性评价中的应用。这些研究主要基于摩尔库仑或者Drucker-Prager等线性破坏准则,然而,岩体中广泛分布着大小不一的结构面,岩体的应力应变关系呈现非线性特征[8-9],如赵坚[10]通过研究发现:对于天然粗糙节理岩体,剪切强度的增长率随正应力的逐渐增加、凸起部分逐渐被剪切和扩张角的减小而减小,从而导致其剪切强度与正应力呈非线性关系;因此,采用线性准则对岩体应力应变特征进行描述存在一定局限性。而对于节理岩体,众多非线性准则中巴顿准则是目前最常用的节理岩体剪切强度模型[11-13]。将巴顿非线性破坏准则与单元安全系数方法相结合对岩体稳定性进行判定,具有一定工程意义和理论意义。为此,本文作者研究了摩尔库仑准则下单元安全系数的计算方法,讨论巴顿准则和摩尔库仑准则的关系,并建立基于巴顿准则的非线性单元安全系数计算公式;最后,通过算例分析,验证本文所建立的非线性单元安全系数的正确性,以便为工程实践和理论分析提供参考。

1 非线性单元安全系数的推导

1.1 摩尔库仑准则下的单元安全系数

根据沈可等[14]的研究可知:单元安全系数Ke能够定量描述单元在复杂应力作用下的破坏程度,反映岩体的稳定状况,它与岩体参数、应力分布和强度准则有直接关系:Ke>1,表示单元处于屈服面内部,岩体未破坏;Ke<1,表示单元处于屈服面外部,岩体已破坏;Ke=1,表示单元处于屈服面上,岩体处于临界破坏状态。根据岩体抗剪安全系数的定义,并结合摩尔库仑强度理论,可推导相应的单元安全系数公式。

在摩尔库仑强度理论中,岩体的抗剪强度与周围的应力分布有关,当岩体中某个面的剪应力超过其抗剪强度时,岩体出现剪切破坏。建立单元的应力Mohr圆,如图1所示,则作用于该面上的法向及切向应力分别为:

式中:σ1和σ3分别为单元的最大、最小主应力;α为剪切面与最小主平面的夹角。

图1 单元应力状态的Mohr圆Fig.1 Mohr circle for stress state of element

假设该面上的抗剪强度为cτ,按Mohr-Coulomb强度理论有:

式中:c和φ分别为岩体的黏结力和内摩擦角。

根据单元安全系数 Ke的定义[15]以及式(1)~(3)可得:

由式(4)可以看出:单元的安全系数是关于α的函数,因此,可对α进行求导,以确定Ke的最小值。令可得:

将式(5)代入式(4),可得Ke的计算公式:

1.2 巴顿准则下的单元安全系数

巴顿在大量天然节理岩体的剪切试验基础上提出巴顿准则[13]。在节理岩体工程中,巴顿模型被广泛运用于分析和推断岩石节理的剪切强度,其形式为:

式中:nσ为节理的正应力;bφ为基本摩擦角,根据文献[16-18],bφ可取为定值30°;JRC为节理粗糙系数;JCS为岩体压缩强度。

从式(6)可以看出:在摩尔库仑准则中,单元安全系数主要取决于岩体的强度参数黏结力和内摩擦角。因此,为了在巴顿准则中推广单元安全系数,只需确立巴顿准则参数与摩尔库仑准则参数之间的关系,然后,将所确立的参数代入式(6)即可得到基于巴顿准则参数的单元安全系数计算公式。

对式(8)进行三角关系变换:

从 fa的计算公式可以看出:当 σn→0时,显然这是不成立的。因此,巴顿建议[13]:在实际工程应用中,不应该大于70°。

将式(9)~(11)代入式(6)即可得到巴顿非线性准则下的单元安全度Ke计算公式:

2 算例验证

为了验证本文所建立的基于巴顿非线性准则下单元安全系数的正确性,利用有限差分软件FLAC3D建立隧道开挖计算模型。该隧道直径为12.0 m,埋深为30.0 m,整体模型长为70.0 m,宽为20.0 m,高为55.0 m,单元数为25 200,节点数为27 775,如图2所示。围岩采用巴顿非线性准则描述,其参数为:bφ=30°,JRC=10.0,JCS=30.0 MPa,容重 γ=25.0 kN/m3;边界条件为:底部固定约束,四周约束法向位移,上部为自由边界。

通过差分法计算,根据式(12),利用FLAC3D软件的内置FISH语言[19-21]编制相应的非线性单元安全系数计算程序,所得结果如图3所示。从图3可以看出:在靠近隧道开挖面位置,由于隧道开挖使围岩约束消失,岩体存在向隧道内运动的趋势,因此,该部位的安全系数最小,部分区域的安全系数小于 1;对于单元安全系数Ke≤1的区域与由FLAC3D软件计算的塑性区分布范围基本相同,从而验证了本文所推导的基于巴顿准则参数的单元安全系数计算公式(12)的正确性,以及本文采用FLAC3D软件嵌入式(12)的自编程序的正确性;另外,由于单元安全系数能够表征各个单元的破坏程度,而FLAC3D软件的塑性区判别岩体破坏情况只能反映岩体是否被破坏,因此,基于单元安全系数的判别方法的结果优于FLAC3D软件的计算结果。

图2 数值计算模型Fig.2 Numerical calculation models

图3 单元安全系数等值线分布与FLAC3D数值计算塑性区的对应关系Fig.3 Corresponding relationship of isoline of element safety factor and plastic zone distribution by FLAC3D

3 结论

(1) 通过理论分析,推导了巴顿准则和摩尔库仑准则的关系,采用节理粗糙系数 JRC和岩体压缩强度JCS表征的岩体剪切强度参数为黏结力 c和内摩擦角φ,得到JRC和JCS与c和φ之间的关系,并建立了采用巴顿准则参数表征的单元安全系数。

(2) 通过FLAC3D建立隧道开挖计算模型,利用内置的 FISH语言,编制相应巴顿准则下非线性单元安全系数程序,得到单元安全系数Ke≤1对应的区域与由FLAC3D计算得到的塑性区分布范围大致相同,验证了所推导的基于巴顿准则参数的单元安全系数计算公式以及自编程序的正确性。

[1] 鲁光银, 朱自强, 李华, 等. 公路隧道岩体质量分级的模糊层次分析法[J]. 中南大学学报: 自然科学版, 2008, 39(2):368-374.LU Guang-yin, ZHU Zi-qiang, LI Hua, et al. Rock mass classification method in highway tunnel based on fuzzy analytic hierarchy process[J]. Journal of Central South University:Science and Technology, 2008, 39(2): 368-374.

[2] LI Xi-bing, ZHANG Wei, LI Di-yuan, et al. Influence of underground water seepage flow on surrounding rock deformation of multi-arch tunnel[J]. Journal of Central South University of Technology, 2008, 15(1): 69-74.

[3] 李树忱, 李术才, 徐帮树. 隧道围岩稳定分析的最小安全系数法[J]. 岩土力学, 2007, 28(3): 549-554.LI Shu-chen, LI Shu-cai, XU Bang-shu. Minimum safety factor method for stability analysis of surrounding rock mass of tunnel[J]. Rock and Soil Mechanics, 2007, 28(3): 549-554.

[4] 张黎明, 郑颖人, 王在泉, 等. 有限元强度折减法在公路隧道中的应用探讨[J]. 岩土力学, 2007, 28(1): 97-106.ZHANG Li-ming, ZHENG Ying-ren, WANG Zai-quan, et al.Application of strength reduction finite element method to road tunnels[J]. Rock and Soil Mechanics, 2007, 28(1): 97-106.

[5] 周辉, 张传庆, 冯夏庭, 等. 隧道及地下工程围岩的屈服接近度分析[J]. 岩石力学与工程学报, 2005, 24(17): 3083-3087.ZHOU Hui, ZHANG Chuan-qing, FENG Xia-ting, et al.Analysis of rock mass stability in tunnel and underground engineering based on yield approach index[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3083-3087.

[6] 张传庆, 周辉, 冯夏庭. 基于破坏接近度的岩土工程稳定性评价[J]. 岩土力学, 2007, 28(5): 888-894.ZHANG Chuan-qing, ZHOU Hui, FENG Xia-ting. Stability assessment of rockmass engineering based on failure approach index[J]. Rock and Soil Mechanics, 2007, 28(5): 888-894.

[7] 张传庆, 周辉, 冯夏庭, 等. 基于屈服接近度的围岩安全性随机分析[J]. 岩石力学与工程学报, 2007, 26(2): 292-299.ZHANG Chuan-qing, ZHOU Hui, FENG Xia-ting, et al.Stochastic analysis method on safety of surrounding rock mass based on yielding approach index[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 292-299.

[8] 巫德斌, 徐卫亚. 基于Hoek-Brown准则的边坡开挖岩体力学参数研究[J]. 河海大学学报, 2005, 33(1): 89-93.WU De-bin, XU Wei-ya. Hoek-Brown criterion-based study on mechanical parameters of excavated slope rock masses[J].Journal of Hohai University, 2005, 33(1): 89-93.

[9] 蒋青青. 基于 Hoek-Brown 准则点安全系数的边坡稳定性分析[J]. 中南大学学报: 自然科学版, 2009, 40(3): 786-790.JIANG Qing-qing. Stability of point safety factor of slope based on Hoek-Brown criterion[J]. Journal of Central South University:Science and Technology, 2009, 40(3): 786-790.

[10] 赵坚. 岩石节理剪切强度的JRC-JMC新模型[J]. 岩石力学与工程学报, 1998, 17(4): 349-357.ZHAO Jian. A new JRC-JMC shear strength criterion for rock joint[J]. Chinese Journal of Rock Mechanics and Engineering,1998, 17(4): 349-357.

[11] Choi SO, Chung K. Stability analysis of jointed rock slopes with the Barton constitutive model in UDEC[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(S1):581-586.

[12] Fotoohi K, Mitri H S. Non-linear fault behaviour near underground excavations: A boundary element approach[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 20(3): 173-190.

[13] Barton N, Choubey V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54.

[14] 沈可, 张仲卿. 三维抗滑稳定分析中的点安全系数法[J]. 人民珠江, 2003(2): 21-22.SHEN Ke, ZHANG Zhong-qing. Point safety factor method for 3-dimensional stability analysis[J]. Pearl River, 2003(2): 21-22.

[15] 宁宇, 徐卫亚, 郑文棠, 等. 白鹤滩水电站拱坝及坝肩加固效果分析及整体安全度评价[J]. 岩石力学与工程学报, 2008,27(9): 1890-1898.NING Yu, XU Wei-ya, ZHENG Wen-tang, et al. Reinforcement effect analysis and global safety evaluation of arch dam and abutment of Baihetan Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1890-1898.

[16] 陶振宇. 水工建设中的岩石力学问题[M]. 北京: 水利水电出版社, 1979: 1-50.TAO Zhen-yu. Rock mechanics problem in hydraulic construction[M]. Beijing: Water Resources and Hydropower Press, 1979: 1-50.

[17] Priest S D. Determination of shear strength and threedimensional yield strength for the Hoek-Brown criterion[J].Rock Mech Rock Eng, 2005, 38(4): 299-327.

[18] 杜时贵, 郭霄, 颜育仁. JRC-JCS模型在抗剪强度参数取值中的应用[J]. 金华职业技术学院学报, 2004, 4(1): 1-4.DU Shi-gui, GUO Xiao, YAN Yu-ren. JRC-JCS model and its application on studying shear strength of rock joint[J]. Journal of Jinhua College of Profession and Technology, 2004, 4(1): 1-4.

[19] Itasca Consulting Group. Theory and background[R]. Minnesota:Itasca Consulting Group, 2002.

[20] 林杭, 曹平, 宫凤强. 位移突变判据中监测点的位置和位移方式分析[J]. 岩土工程学报, 2007, 29(9): 1433-1438.LIN Hang, CAO Ping, GONG Feng-qiang. Analysis of location and displacement mode of monitoring point in displacement mutation criterion[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1433-1438.

[21] Grasselli G. 3D behaviour of bolted rock joints: Experimental and numerical study[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 13-24.

猜你喜欢
库仑巴顿节理
邢台老震区库仑应力演化及地震危险性分析
充填节理岩体中应力波传播特性研究
1976年唐山强震群震后库仑应力演化及其与2020年古冶5.1级地震的关系
顺倾节理边坡开挖软材料模型实验设计与分析
巴顿(上)
巴顿(下)
新疆阜康白杨河矿区古构造应力场特征
巴顿(下)
巴顿(上)
万有引力与库仑力统一公式