许友卿 庄 丽 丁兆坤
多不饱和脂肪酸(poly unsaturated fatty acids,PUFAs)是指含有两个或两个以上双键且碳链长为16个碳原子以上的直链脂肪酸。它主要包括n-3、n-6和n-9系列脂肪酸,其中n-3和n-6系列的PUFAs具有重要生物学意义。n-3系列的PUFAs如亚麻酸(linolenic acid,LNA,C18:3n-3)、二十碳五烯酸(eicosapentaenoic acid,EPA,C20:5n-3)和二十二碳六烯酸(docosahexaenoic acid,DHA,C22:6n-3)等。n-6系列的PUFAs如亚油酸(linoleic acid,LA,C18:2n-6)和花生四烯酸(arachidonic acid,AA,C20:4n-6)等。PUFAs中碳链≥C20且含三个或更多双键的不饱和脂肪酸称为高度不饱和脂肪酸(highly unsaturated fatty acids,HUFAs),如AA、EPA、DHA等。而LA是合成AA的前体,LNA是合成EPA和DHA的前体[1]。海水鱼需要HUFAs作为必需脂肪酸来满足其正常生长和发育。同种海水鱼在仔稚鱼、幼鱼和成鱼阶段,对其饵料或饲料中HUFAs的需要量是不相同的,以仔稚鱼阶段对饵料或饲料中HUFAs的需要量最高。
目前,我国养殖的名贵海水鱼,如真鲷(Pagrus major)、黑鲷 (Sparus macrocephalus) 和牙鲆(Paralichthys olivaceus)等,其生产性育苗成活率一般低于20%,是因为海水仔稚鱼容易发生大量死亡[2],而饵料缺少PUFAs特别是缺乏n-3HUFAs,是导致海水仔稚鱼发生死亡的一个重要原因[3]。DHA、EPA和AA等PUFAs是构成细胞膜的重要成分;能够影响细胞吞噬能力及呼吸爆发强度;可以调节与免疫相关的酶活性以增强鱼体的免疫能力;AA和EPA还是类二十烷酸的前体,类二十烷酸是细胞和整体应激反应的产物,能够通过环氧化酶(COX)途径进入前列腺素(PGs)和凝血噁烷(TXs),通过脂氧合酶途径进入白三烯(LTs)和羟基二十碳四烯酸(HETEs),通过环氧化物酶进入环氧二十碳四烯酸(EETs)[4],进而发挥各种生理功能。因此PUFAs在维持机体的正常机能、促进生长、发育、繁殖和提高成活率等方面发挥重要的生理作用[5]。
相对于幼鱼和成鱼而言,仔稚鱼生长发育更为迅速,对环境更加敏感而适应能力差,对营养尤其是PUFAs需要较高。由于海水鱼类合成HUFAs的关键酶缺乏或活性低而不能合成HUFAs或合成HUFAs量不足[1,6],因此,海水鱼类尤其是海水仔稚鱼对外源HUFAs依赖特别强,HUFAs对促进海水仔稚鱼的生长发育以及提高存活率的意义重大。本文主要综述PUFAs对海水仔稚鱼生长发育的影响及机理,旨在为仔稚鱼的营养研究及培育提供参考。
PUFAs是细胞膜磷脂的重要成分,对细胞膜的功能有决定性影响。要保持膜的相对流动性,脂肪酸必须有适度不饱和性,以适应体内的粘度,并具有必要的表面活性。n-3 PUFAs可以选择性地渗入某些重要器官,如大脑皮质、视网膜等,参与构成乙醇胺磷脂和神经磷脂,对神经系统起作用。细胞膜上的AA和EPA经环加氧酶和脂氧化酶的作用,代谢合成各种具有生物活性的类二十烷酸,类二十烷酸是一类重要的多聚不饱和脂肪酸化学信使物,在免疫和炎症反应上起至关重要的作用,从而调节海水仔稚鱼的健康和生长发育。
仔稚鱼阶段正是脑神经和视神经迅速生长发育的时期,需要从食物中摄取DHA等重要营养物质,以满足其脑神经和视神经发育的需要。仔稚鱼饵料中缺乏DHA可能会显著地影响神经和视觉系统的发育,进而导致依赖神经内分泌系统的生理和行为发生变化。由于DHA对仔稚鱼脑和视网膜的发育有着特殊的作用[7],因此,在脊椎动物生命的早期,供应高水平DHA对神经和感官的正常发育至关重要[8]。这就是DHA被强烈保留在欧洲海鲈(Dicentrarchus labrax L.)脑组织脂肪中[9]、大西洋鳕(Gadus morhua)[10]和虹鳟(Salmo gairdneri)[11]的脑和视网膜中之缘故。在仔鱼神经组织的发育过程中,DHA有助于色素正常沉积,提高视觉的灵敏度,色素沉积异常会损害视力的正常发育[12],而视力的好坏对仔鱼判断、追逐和捕食活饵料至关重要。仔鱼日粮中DHA不足会降低视觉反应[7,13]。McEvoy等[14]认为,鲆鲽类色素不正常可能与DHA的需求有关。在鱼类神经和视觉细胞膜,尤其在棒状细胞和突触体膜上DHA的浓度很高[15-16]。当食物中缺少DHA时,稚鱼的棒状细胞功能受到影响,视力降低,导致鱼在光线较暗的水域捕食能力削弱[17,7]。缺乏DHA的大西洋鲱(Clupea harengus)稚鱼,其视神经发育不良,视力下降,在光线较弱的条件下,捕食能力也随之下降[7]。
PUFAs特别是HUFAs研究是近年脂类研究的热点,其中AA是前沿。缘由之一是因为AA是类二十烷酸的前体,AA及其代谢产物对神经细胞的影响很大,包括调整神经元的跨膜信号、神经元之间有效信号传递、调节神经递质的释放以及葡萄糖的摄取等[18]。AA在脑和神经组织中的含量通常占PUFAs的40%~50%,在神经末梢中高达70%,是大脑功能和视网膜发育必不可少的物质[18]。研究表明,类二十烷酸参与比目鱼色素的沉积,若增加2系列类二十烷酸的前体AA,会显著地降低几种比目鱼物种色素的正常沉积[19-21]。Villalta等(2005a)[21]研究发现,AA 对变态的塞内加尔鳎(Solea senegalensis)的色素调控起重要作用,饵料中AA/EPA和头部AA的含量与色素沉积有明显的负相关。但是,低水平的DHA不会抑制塞内加尔鳎色素沉积[22]。如果2系列的类二十烷酸抑制色素细胞的发育,增加EPA和DHA的水平可以刺激这一发育,因为它们可以通过不同的机制同时抑制2系列类二十烷酸的生成[23-25]。此外,AA还可以形成视网膜的感光体,促进视神经元树状突大量增加、延长以及髓鞘形成,并与视网膜光感受器的发育快慢密切相关[18]。因此,AA对正在迅速生长发育的仔稚鱼尤为重要。
不但PUFAs的不同种类和含量影响仔稚鱼的生长发育,而且它们的比例亦然。许友卿等(2007)[5]指出,由于PUFAs在代谢方面存在竞争作用,主要是DHA和EPA与AA的竞争,尤其是EPA与AA之间的竞争,以致这三种PUFAs的比例是否恰当会直接影响海水仔稚鱼视网膜和脑的发育。张其永等[26]研究发现,比目鱼类眼侧出现不良色素沉积与DHA、EPA和AA的比例失调有关,导致视网膜和脑不能正常发育,严重影响视力。McEvoy等(1998a)[19]报道,日粮中AA和EPA对大菱鲆和大西洋大比目鱼的色素沉积作用相反,当脑中EPA/AA为4:1时,是色素正常沉着的最佳比例,而当比例低于1:1时,会导致色素100%沉着异常。Hamre等(2008a)[27]研究发现,大西洋大比目鱼仔鱼全身DHA的含量高于总脂肪酸13%时,可获得正常的色素沉着,此时EPA/AA约为3.5:1。饵料中的DHA/EPA>2及EPA/AA>5可以有效改善大菱鲆(Psetta maxima)和庸鲽(Hippoglossus pinguis)眼侧的色素沉着(Bell等,2003)[28]。
据报道,DHA、EPA和AA等PUFAs可以调节与免疫相关的酶活性以增强鱼体的免疫力,饲料中脂肪酸水平可以影响机体组织中脂肪酸水平,因此,在仔稚鱼饲料中添加适量的PUFAs可以调节机体的免疫功能。但是,PUFAs对鱼体免疫功能的调控机制还不很清楚,可能是通过调节生成产物的比例来调控机体的免疫功能,而类二十烷酸的生成与活性受到组织磷脂中脂肪酸比例的影响(Sargent等,1999)[16]。
在某些情况下,改变鱼类日粮中PUFAs的水平可能会对抵抗疾病和免疫状态有益,并起决定性作用。然而,摄入高水平PUFAs会抑制某些免疫功能,降低存活率[29-32]。饲料中高水平的DHA/EPA会显著地增强石斑鱼(Epinephelus malabaricus)稚鱼细胞吞噬活性和呼吸爆发活性[33]。可是用玉米油100%替代鱼油饲喂石斑鱼稚鱼8周会显著地降低循环白细胞的呼吸爆发[34]。同样,用混合植物油或个别植物油40%替代欧洲海鲈(Dicentrarchus labrax)饲料中的鱼油会显著地降低头肾白细胞的呼吸爆发[35-36]。但是,用单个或混合的植物油60%(W)和80%(W)替代鱼油饲喂乌颊鲷鱼204 d,不会影响循环中性粒细胞的呼吸爆发[37]。Montero等[38]用亚麻籽油或大豆油100%替代鱼油饲喂尖头鲷稚鱼,会显著地降低吞噬活性和血清补体旁路活性,而用50%亚麻籽油+50%大豆油混合(W/W)的植物油对此不会产生显著影响。海鲈(Dicentrarchus labrax)稚鱼日粮中共轭亚油酸(conjugated linoleic acid,CLA)的含量达到1%会增加血浆溶菌酶的活性,并与补体旁路活性呈正相关,这可能意味着抗菌能力的增加[39]。Montero等[37]研究发现,与摄食亚麻籽油、菜籽油或豆油的乌颊鲷鱼相比,摄食鱼油的乌颊鲷有较高的血清溶菌酶活性。
炎症反应是血液中的细胞和蛋白成分穿过血管壁进入组织的过程。创伤、抗原或异物入侵、感染等都可引起炎症反应,引起多种生物活性物质的释放。PUFAs是细胞膜磷脂的主要结构成分,也是炎性介质底物的主要来源。PUFAs调节炎症反应的机制还不清楚,可能与以下几点有关:①影响类二十烷酸化合物的合成;②改变膜脂成分,影响膜流动性、某些酶活性、激素与受体的结合和信号的传递;③调控基因的表达;④影响脂质代谢等。AA通过环氧化酶可产生前列腺素(PGs),特别是PGE2,是炎症发生的介质。AA还通过白细胞的5-脂氧化酶产生白三烯(LTs),如LTC4、LTD4、LTA4、LTB4 等,其中 LTB4 具有很强的白细胞趋化性,在炎症的发生中起重大作用;LTC4和LTD4也通过增加血管的通透性参与炎症反应。而EPA可通过白细胞的5-脂氧化酶产生一类几乎无生理活性的物质LTA5、LTB5等,后者竞争抑制LTB4等的合成,LTA5还可阻碍LTA4转化成LTB4。EPA也可通过竞争性抑制作用使AA合成PGE2减少,降低急性炎症的严重性,因而具有抗炎作用[40]。虽然DHA不是环氧化酶和脂氧化酶的底物,但是它可以通过抑制膜上AA的释放影响类二十烷酸化合物的合成。此外,DHA是机体合成PGs的强烈抑制剂[41],因此,DHA也具有抗炎作用。鱼油中含有特别丰富的n-3PUFAs,具有显著的抗炎作用[42-43]。例如,摄食富含n-3PUFAs的橄榄油和鱼油等食物会对机体炎症性肠病有一定的保护作用[44-45]。Belluuzzi(1996)[46]也发现用鱼油胶囊可以治疗局限性肠炎(Crohn's disease)。鱼油对急性坏死胰腺炎也有一定的治疗作用[47-48],口服n-3PUFAs可以减轻患有急性胰腺炎的炎症反应,这是因为EPA和DHA能置换细胞膜磷脂中的AA,竞争环氧酶和脂氧合酶,从而减少来源于AA的炎性介质,减轻炎性反应[49]。对急性坏死性胰腺炎机体输注n-3PUFAs比其他类型的脂肪乳剂更能降低胰腺的脂质过氧化反应和超氧化物歧化酶活性,组织学上胰腺坏死的程度也明显减轻[50]。虽然这些结果是在哺乳类机体获得的,但是具有重要的参考价值,对研究水产动物特别是鱼类具有重要的指导意义。
PUFAs的来源较广,可源自鱼油、海藻和植物油等,但是HUFAs主要源于鱼油和海藻。因此,用富含n-3PUFAs的鱼油或海藻饲喂海水仔稚鱼,可促进其生长发育,提高存活率,而对某些海水仔稚鱼仅用或大部分用植物油的效果则相反。由于海藻(Schizochytrium sp.)富含DHA,因此在全植物性饲料中添加1.0%~1.5%的干海藻会促进斑点叉尾鮰(Ictalurus punctatu)的生长[51]。用干海藻或海藻油全部或部分地替换海鱼油饲喂真鲷仔鱼[52],不会影响其生长和存活。Fountoulaki等(2009)[53]用植物油如大豆油和菜籽油替代69%的鱼油饲喂真鲷,不会影响其生长,而用棕榈油替代鱼油饲喂真鲷则影响其生长。Peng等(2008)[54]用大豆油部分替代鱼油饲喂黑鲷(Acanthopagrus schlegeli)稚鱼9周,对其生长没有消极影响,而替换比例达到100%则会降低其生长。而用80%的大豆油或亚麻油饲喂乌颊鲷 (Sparus aurata)6个月,其生长速度下降[55]。Llorens等[56]研究发现,直到实验的第211 d,日粮中大豆油的水平(0%、24%、48%、72%)对乌颊鲷的生长没有影响,而在实验的第309 d,摄食72%大豆油日粮的鱼增重最低。Montero等[57]用菜籽油替代鱼油的60%对欧洲海鲈进行了为期8个月的实验,结果是欧洲海鲈生长下降。Francis等[58]用菜籽油100%替代鱼油饲喂默里鳕(Maccullochella peelii peelii)稚鱼会导致其生长降低,死亡率增高。用植物油100%替代鱼油会降低尖头鲷稚鱼的生长[38]。Yanes-Roca 等[59]报道,梭鱼(Centropomus undecimalis)卵中的DHA含量占总脂肪酸的13%时,其仔鱼的成活率较高。饲料HUFAs不足会降低军曹鱼(Rachycentron canadum)稚鱼[60]、大菱鲆(Scophtalmus maximus)稚鱼[61]和真鲷(Sparus aurata)仔鱼[62]的生长和成活率。Hamre等[63]研究发现,摄入DHA的量不足会影响大西洋大比目鱼(Hippoglossus hippoglossus L)仔稚鱼的生长和存活,而富含n-3HUFAs(DHA)的海藻饲料可促进斑点叉尾鮰(Ictalurus punctatus)幼鱼的生长[51]。上述例子都说明饲料中PUFAs的含量影响海水仔稚鱼的生长和成活率。
然而,也有不同的报道,Benedito-Palos等[64]用混合植物油联合替代鱼粉和鱼油饲喂真鲷稚鱼,其生长表现没有差异。Lin等[65]报告,摄食鱼油或植物油的石斑鱼(Epinephelus coioides)之生长或存活没有显著性差异。可能是鱼种、环境和实验周期不同的缘故。
日粮中PUFAs的比例对海水仔稚鱼的生长和存活也有重大影响,因鱼种、环境和PUFAs而异。刘镜恪等[66]研究发现,牙鲆(Paralichthys olivaceus)仔稚鱼实验微粒饲料中EPA与AA的比例为2/1时,牙鲆仔稚鱼的生长、存活达到最佳。Blanchard等[67]研究证明,稚鲈(Perca fluviatilis)日粮中LNA/LA比例的递增或用植物油部分替代鱼油不会影响其生长。然而,丁兆坤等(2009)报道,当DHA和EPA的总量为1.50%不变时,不同 DHA/EPA 比例(0.90、1.10、1.30、1.50、1.70、1.90、2.10)对军曹鱼幼鱼生长、成活率、核酸和脂肪酸影响不显著[68-69]。
此前普遍认为,海水鱼必须从食物中摄取DHA、EPA等HUFAs,是因为其不能合成或合成的HUFAs关键酶少的缘故[1,6]。但是,2009年,丁兆坤、许友卿博士与英国合作研究的结果表明,军曹鱼具有合成高度不饱和脂肪酸的关键酶-△6、△5去饱和酶和延长酶,预示军曹鱼可能具有合成高度不饱和脂肪酸的能力[70],海水鱼类对脂肪酸的代谢能力可能与鱼种及生活环境密切相关,进一步的深入研究正在进行中。
综上所述,PUFAs对海水仔稚鱼健康、生长、发育和成活均产生重要的影响,但是某些机理尚待进一步深入研究。而用分子生物学技术研究PUFAs对海水鱼特别是仔稚鱼的调控,从分子和基因水平阐明其机理,将是该领域学者义不容辞的任务。
[1]Sargent J R,Tocher D R,Bell J G.The lipids [M].Halver J E,Hardy R W,Fish Nutrition,3rd ed,Academic Press:San Diego,2002:181-257.
[2]刘镜恪,徐世宏.海水仔稚鱼必需脂肪酸和磷脂的营养需求[J].海洋科学,2006,30(11):75-81.
[3]Copeman L A,Parrish C C,Brown J A,et al.Effects of docosahexaenoic,eicosapentaenoic and arachidonic acids on the early growth,survival,lipid composition and pigmentation of yellowtail flounder(Limanda ferruginea):A live food enrichment experiment[J].Aquaculture,2002,210:285-304.
[4]Bell J G,Ashton I,Secombes C J,et al.Dietary lipid affects phospholipid fatty acid compositions,eicosanoid production and immune function in Atlantic salmon(Salmo salar)[J].Prostaglandins Leukot.Essent.Fat.Acids,1996,54:173-182.
[5]许友卿,张海柱,丁兆坤.二十二碳六烯酸和二十碳五烯酸的代谢研究[J].水产科学,2007,26(10):580-583.
[6]Zheng X Z,Tocher D R,Dickson C A,et al.Highly unsaturated fatty acid synthesis in vertebrates:New insights with the cloning and characterisation of a Δ6 desaturase of Atlantic salmon[J].Lipids,2005,40:13-24.
[7]Bell M V,Batty R S,Dick J R,et al.Dietary deficiency of .docosahexaenoic acid impairs vision at low light intensities in juvenile herring(Clupea harengus L.)[J].Lipids,1995b,30:443-449.
[8]Sastry P S.Lipids of nervous tissue-composition and metabolism[J].Prog.Lipid Res.,1985,24:69-176.
[9]Pagliarani A,Pirini M,Trigari G,et al.Effects of diets containing different oils on brain fatty acid composition in sea bass(Dicentrarchus labrax L.)[J].Comp.Biochem.Physiol.,1986,83B:277-282.
[10]Tocher D R,Harvie D G.Fatty acid compositions of the major phosphoacylglycerols from fish neural tissues;n-3 and n-6 polyunsaturated fatty acids in rainbow trout(Salmo gairdneri)and cod(Gadus morhua)brains and retinas[J].Fish Physiol-Biochem,1988,5:229-239.
[11]Bell M V,Tocher D R.Molecular species composition of the major phospholipids in brain and retina from rainbow trout(Salmo gairdneri)[J].Biochem.J.,1989,264:909-915.
[12]Kanazawa A.Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish[J].J.World Aquacult.Soc.,1993,24:162-166.
[13]Benitez-Santana T,Masuda R,Juarez Carrillo E,et al.Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus auratalarvae[J].Aquaculture,2007,264:408-417.
[14]McEvoy L A,Naess T,Bell J G,et al.Lipid and fatty acid composition of normal and malpigmented Atlantic halibut(Hippoglossus hippoglossus)fed enriched Artemia:a comparison with fry fed wild copepods[J].Aquaculture,1998b,163:237-250.
[15]Sargent J R,McEvoy L A,Bell J G.Requirements,presentation and sources of polyunsaturated fatty acids in marine fish larva feeds[J].Aquaculture,1997,155:117-127.
[16]Sargent J,McEvoy L,Estevez A,et al.Lipid nutrition of marine fish during early development current status and future directions[J].Aquaculture,1999,179:217-229.
[17]Bell J G,Castell J D,Tocher D R,et al.Effects of different dietary arachidonic acid:docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot(Scophthalmus maximus)[J].Fish Physiol.Biochem.,1995a,14:139-151.
[18]丁兆坤,刘亮,许友卿.二十碳四烯酸研究[J].水产科学,2007,26(12):684-688.
[19]McEvoy L A,Estevez A,Bell J G,et al.Influence of dietary levels of eicosapentaenoic and arachidonic acid on the pigmentation success of turbot(Scophtalmus maximus)and halibut(Hippoglossus hippoglossus)[J].Bull Aquac.Assoc.Can.,1998a,98:17-20.
[20]Estevez A,McEvoy L A,Bell J G,et al.Growth,survival,lipid composition and pigmentation of turbot(Scophthalmus maximus)larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids[J].Aquaculture,1999,180:321-343.
[21]Villalta M,Estevez A,Bransden M P.Arachidonic acid enriched live prey induces albinism in Senegalese sole(Solea senegalensis)larvae[J].Aquaculture,2005a,245:193-209.
[22]Villalta M,Estevez A,Bransden M P,et al.The effect of graded concentrations of dietary DHA on growth,survival and fatty acid profile of Senegal sole (Solea senegalesis)larvae during the Artemia feeding period[J].Aquaculture,2005b,249:353-365.
[23]Ringbom T,Huss U,Stenholm A,et al.COX-2 inhibitory effects of naturally occurring and modified fatty acids[J].J.Nat.Products,2001,64:745-749.
[24]Denkins Y,Kempf D,Ferniz M,et al.Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brainmetastatic melanoma[J].J.Lipid Res.,2005,46:1278-1284.
[25]Roman A S,Schreher J,Mackenzie A P,et al.Omega-3 fatty acids and decidual cell prostaglandin production in response to the inflammatory cytokine IL-1 beta [J].Am.J.Obstet Gynecol.,2006,195:1693-1699.
[26]张其永,洪万树.海洋养殖鱼类仔稚鱼摄食和营养研究的进展[J].台湾海峡,2001,20(增刊):1-10.
[27]Hamre K,Harboe T.Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut(Hippoglossus hippoglossus L.)larvae[J].Aquaculture,2008a,277:101-108.
[28]Bell J G,McEvoy L A,Estevez A.Optimising lipid nutrition in first-feeding flatfish larvae[J].Aquaculture,2003,227:211-220.
[29]Erdal J I,Evensen O,Kaurstad O K,et al.Relationship between diet and immune response in Atlantic salmon(Salmo salar L)after feeding various levels of ascorbic-acid and omega-3-fatty-acids[J].Aquaculture,1991,98:363-379.
[30]FracalossiDM,LovellRT.Dietarylipidsourcesinfluenceresponsesof channel catfish(Ictalurus punctatus)to challenge with the pathogen(Edwardsiellaictaluri)[J].Aquaculture,1994,119:287-298.
[31]Kiron V,Fukuda H,Takeuchi T,et al.Essential fatty-acid nutrition and defense mechanisms in rainbow trout(Oncorhynchus mykiss)[J].Comp.Biochem.Physiol.,1995,111:361-367.
[32]Misra S,Sahu N P,Pal A K,et al.Pre-and post-challenge immuno-haematological changes in Labeo rohita juveniles fed gelatinised or non-gelatinised carbohydrate with n-3 PUFA [J].Fish Shellfish Immunol.,2006,21:346-356.
[33]Wu F C,Ting Y Y,Chen H Y.Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus[J].Fish Shellfish Immunol.,2003,14:223-238.
[34]Lin Y H,Shiau S Y.Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper,Epinephelus malabaricus[J].Aquac.Nutr.,2007,13:137-144.
[35]Mourente G,Good J E,Bell J G.Partial substitution of fish oil with rapessed,linseed and olive oils in diets for European sea bass(Dicentrarchus labrax L.):effects on flesh fatty acid composition,plasma prostaglandins E2 and F2a,immue function and effectiveness of a fish oil finishing diet[J].Aquac.Nutr.,2005,11:25-40.
[36]Mourente G,Good J E,Thompson K D,et al.Effects of partial substitution of dietary fish oil with blends of vegetable oils,on blood leucocyte fatty acid compositions,immune function and histology in European sea bass(Dicentrarchus labrax L.)[J].Br.J.Nutr.,2007,98:770-779.
[37]Montero D,Kalinowski T,Obach A,et al.Vegetable lipid sources for gilthead seabream (Sparus aurata):effects on fish health[J].Aquaculture,2003,225:353-370.
[38]Montero D,Grasso V,Izquierdo M S,et al.Total substitution of fish oil by vegetable oils in gilthead seabream(Sparus aurata)diets:Effects on hepatic Mx expression and some immune parameters[J].Fish Shellfish Immunol.,2008,24:147-155.
[39]Makol A,Torrecillas S,Fernández-Vaquero A,et al.Effect of conjugated linoleic acid on dietary lipids utilization,liver morphology and selected immune parameters in sea bass juveniles(Dicentrarchus labrax)[J].Comp.Biochem.Physiol.,2009,154:179-187.
[40]Gill I,Valivety R.Polyunsaturated fatty acids,part 1:Occurrence,biological activities and applications [J].Trends Biotechnol.,1997,15:401-409.
[41]James M J,Beringer C,Kless T.Dietary polyunsaturated fatty acid and inflammatory mediator production [J].Clin.Nutr.,2000,71:343-348.
[42]Calder P C.n-3 polyunsaturated fatty acids,inflammation,and inflammatory diseases[J].Am J Clin Nutr,2006,83:1505S-1519S.
[43]Priante G,Bordin L,Musacchio E,et al.Fatty acids and cytokine mRNA expression in human osteoblastic cells:a specific effect of arachidonic acid[J].Clinical Science,2002,102:403-409.
[44]Camuesco D,Comalada M,Concha A,et al.Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil,rich in EPA and DHA (n-3)polyunsaturated fatty acids,in rats with DSS-induced colitis[J].Clinical nutrition,2006,25:466-476.
[45]Camuesco D,Gálvez J,Nieto A,et al.Dietary olive oil supplemented with fish oil,rich in EPA and DHA(n-3)polyunsaturated fatty acids,attenuates colonic inflammation in rats with DSS-induced colitis[J].J.Nutr.,2005,135:687-694.
[46]Belluzzi A,Brignola C,Campieri M,et al.Effect of an entericcoated fish oil preparation on relapses in Crohn's disease [J].N Engl.J.Med.,1996,334:1557-1560.
[47]刘纳新,郑聪,姚建高,等.鱼油对大鼠急性坏死性胰腺炎抗氧化酶的影响[J].肝胆胰外科杂志,2008,20(2):97-100.
[48]曹亚娟,谢敏,潘一鸣,等.ω-3鱼油脂肪乳剂对实验性急性胰腺炎IL-1β、TNF-α和红细胞膜稳定性的影响[J].药学进展,2007,31(6):269-273.
[49]赵坤,朱维铭,李幼生,等.n-3多不饱和脂肪酸对急性胰腺炎大鼠炎性细胞因子表达的调控作用[J].肠外与肠内营养,2008,15(1):23-25.
[50]Kilian M,Heukamp I,Gregor J I,et al.n-3,n-6,and n-9 polyunsaturated fatty acids-which composition in parenteral nutrition decreases severity of acute hemorrhagic necrotizing pancreatitis in rats?[J].Int.J.Colorectal.Dis.,2006,21(1):57-63.
[51]Li M H,Robinson E H,Tucker C S,et al.Effects of dried algae Schizochytrium sp.,a rich source of docosahexaenoic acid,on growth,fatty acid composition,and sensory quality of channel catfish Ictalurus punctatus[J].Aquaculture,2009,292:232-236.
[52]Ganuza E,Benitez-Santana T,Atalah E,et al.Crypthecodinium cohnii and Schizochytrium sp.as potential substitutes to fisheries-derived oils from seabream (Sparus aurata)microdiets[J].Aquaculture,2008,277:109-116.
[53]Fountoulaki E,Vasilaki A,Hurtado R,et al.Fish oil substitution by vegetable oils in commercial diets for gilthead seabream(Sparus aurata L.);effects on growth performance,flesh quality and fillet fatty acid profile Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures[J].Aquaculture,2009,289:317-326.
[54]Peng S,Chen L,Qin J G,et al.Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemicalcomposition in juvenileblack seabream,Acanthopagrus schlegeli[J].Aquaculture,2008,276:154-161.
[55]Izquierdo M S,Montero D,Robaina L,et al.Alterations in fillet fatty acid profile and flash quality in gilthead seabream (Sparus aurata)fed vegetable oils for a long term period.Recovery of fatty acid profiles by fish oil feeding[J].Aquaculture,2005,250:431-444.
[56]Llorens S M,Vidal A T,Monino A V,et al.Effects of dietary soybean oil concentration on growth,nutrient utilization and muscle fatty acid composition of gilthead seabream(Sparus aurata L.)[J].Aquac.Res.,2007,38:76-81.
[57]Montero D,Robaina L,Caballero M J,et al.Growth,feed utilization and flesh quality of European sea bass(Dicentrarchus labrax)fed diets containing vegetable oils:a time-course study on the effect of a re-feeding period with a 100%fish oil diet[J].Aquaculture,2005,248:121-134.
[58]Francis D S,Turchini G M,Jones P L,et al.Growth performance,feed efficiency and fatty acid composition of juvenile Murray cod,Maccullochella peelii peelii,fed graded levels of canola and linseed oil[J].Aquac.Nutr.,2007,13:335-350.
[59]Yanes-Roca C,Rhody N,Nystrom M,et al.Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis)[J].Aquaculture,2009,287:335-340.
[60]王骥腾,韩涛,田丽霞,等.3种植物油源对军曹鱼生长、体组成和脂肪酸组成的影响[J].浙江海洋学院学报,2007,26(3):237-245.
[61]Bell J G,Tocher D R,Farndale B M,et al.Effects of essentiel fatty acid-deficient diets on growth,mortality,tissue histopathology and fatty acid compositions in juvenile turbot(Scophtalmus maximus)[J].Fish Physiol.Biochem.,1999,20:263-277.
[62]Robin J H,Peron A.Consumption vs.deposition of essential fatty acids in gilthead seabream (Sparus aurata)larvae fed semi-purified diets[J].Aquaculture,2004,238:283-294.
[63]Hamre K,Harboe T.Artemia enriched with high n-3 HUFA may give a large improvement in performance of Atlantic halibut(Hippoglossus hippoglossus L.)larvae [J].Aquaculture,2008b,277:239-243.
[64]Benedito-Palos L,Saera-Vila A,Calduch-Giner J-A,et al.Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead seabream (Sparus aurata L):networking of systemic and local components of GH/IGF axis[J].Aquaculture,2007,267:199-212.
[65]Lin H Z,Liu Y J,He J G,et al.Alternative vegetable lipid sources in diets for grouper,Epinephelus coioides(Hamilton):effects on growth,and muscle and liver fatty acid composition[J].Aquac.Res.,2007,38:1605-1611.
[66]刘镜恪,陈晓琳,徐世宏.实验微粒饲料中廿碳五烯酸(EPA)与廿碳四烯酸(AA)的比例对牙鲆仔稚鱼生长、存活的影响[J].海洋科学,2005,29(10):40-43、53.
[67]Blanchard G,Makombu J G,Kestemout P.Influence of different dietary 18:3n-3/18:2n-6 ratio on growth performance,fatty acid composition and hepatic ultrastructure in Eurasian perch,Perca fluviatilis[J].Aquaculture,2008,284:144-150.
[68]Ding Z,Xu Y,Zhang H,et al.No significant effect of additive ratios of docosahexaenoic and eicosapentaenoic acids on the survival and growth of cobia (Rachycentron canadum)juvenile[J].Aquac Nutr,2009,15:254-261.
[69]Xu Y,Ding Z,Zhang H,et al.Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth,nucleic acid and fatty acids of juvenile cobia(Rachycentron canadum)[J].Lipids,2009,44:1091-1104.
[70]Zheng X,Ding Z,Xu Y,et al.Physiological roles of fatty acyl desaturases and elongases in marine fish:Characterisation of cDNAs of fatty acyl Δ6 desaturase and elovl5 elongase of cobia(Rachycentron canadum)[J].Aquaculture,2009,290:122-131.