摘" 要:对虾在养殖过程中会遇到各种环境胁迫因素,包括重金属污染、病原体感染及其他污染等。面对这些胁迫,除了对虾自身外,其体内的肠道微生物也会做出相应响应。肠道菌群不仅具有指示宿主健康状况的作用,经过调节后还可以提升对虾免疫力、促进对虾生长。对肠道菌群的研究还能加强对疾病的理解,从而制定更有效的对虾病害防治手段。
关键词:肠道微生物;环境污染;对虾养殖
中图分类号:S945.1文献标志码:A
作为世界对虾养殖第一大国,中国的水产养殖产量占世界水产养殖总产量的60%以上[1]。中国的对虾养殖业占有十分重要的经济地位。近年来对虾养殖规模扩大化,养殖环境逐步恶化,对虾面临的环境胁迫因素越来越多,养殖业损失加剧。对虾的消化系统由消化道和消化腺组成。消化道包括前肠、中肠、后肠以及肛门;消化腺主要指肝胰腺。肠道不仅是对虾重要的消化器官——能够消化吸收营养物质、与外界进行物质交换,也是必不可少的免疫器官。肠道具有面积可观的黏膜,上皮细胞彼此紧密连接,还能分泌丰富的生物活性物质。除了这些结构基础,肠道中还存在着与宿主互惠共生的大量微生物。肠道微生物与宿主的肠道环境构成一个复杂的微生态系统,对生物体各种生理状态的调节起着至关重要的作用[2-3]。肠道免疫系统由三大屏障组成,包括肠黏膜细胞构成的机械屏障、肠道免疫细胞及其分泌物构成的免疫屏障和肠道正常菌群构成的生物屏障[4]。有研究表明,肠道菌群与宿主对虾的健康状况息息相关[5-7]。
1 重金属污染
肠道作为接触重金属的器官,肠道微生物在重金属解毒中起着重要作用。LIU等报道利用肠道微生物可以减少重金属毒性[8]。现介绍镉、铅、钴、铜等重金属的影响。
DUAN等人研究了镉和铅暴露对南美白对虾肠道微生物群落的毒性作用,发现共有四十个细菌门的丰度发生了波动,镉和铅暴露改变了微生物多样性,群落组成和代谢功能,进而诱导肠道微生物群变异[9]。LIU等人使用表面展示具有镉结合潜力的肽的大肠杆菌,研究了对虾体内镉积累的变化,发现实验组和对照组的镉元素敏感菌群数量有变化:在门水平上,对照组虾肠道中的主要细菌群落是拟杆菌、变形杆菌、疣微菌和厚壁菌。镉处理组的变形杆菌增加,拟杆菌减少。证明了该全细胞吸附剂能够减轻镉暴露引起的虾肠道微生物群落结构的变化[10]。CHEN等人研究了水性钴对甲壳动物的危害,证明钴胁迫会干扰南美白对虾肠道微生物群的组成和功能。在组成上机会致病菌弧菌的丰度显著增加,功能上氨基酸代谢、脂质代谢和碳水化合物代谢显著降低等[11]。QIAN等人研究了长期水性铜暴露对南美白对虾的毒性,发现1 mg/L的Cu2+可以降低肠道微生物群和KEGG代谢途径的丰度,抑制肠道微生物的氨基酸代谢功能[12]。
镉、铅、钴、铜等重金属对南美白对虾肠道菌群的影响类似,主要体现在多样性和代谢功能的变化上。拟杆菌、变形杆菌、厚壁菌、放线菌和疣微菌是对虾肠道中的优势菌,重金属暴露后机会致病菌丰度显著增加,有益菌群也有所变化。在代谢上,主要是氨基酸代谢、脂质代谢和碳水化合物代谢等代谢途径受到重金属抑制。除此之外,有益细菌也会产生一些有利于对虾生长发育的次生代谢物,如红细菌科(Rhodobacteraceae)可以合成维生素B12[13]。
2 病原体感染
对虾养殖中的常见病原有对虾血细胞虹彩病毒、白斑综合征病毒、传染性皮下及造血组织坏死病毒、急性肝胰腺坏死病致病性副溶血弧菌、虾肝肠胞虫、对虾偷死野田村病毒、桃拉综合征病毒和黄头病毒等。
目前研究较多的是对虾血细胞虹彩病毒、白斑综合征病毒和虾肝肠胞虫等病原对对虾肠道菌群的影响。HE等人发现对虾血细胞虹彩病毒能与有害细菌(光杆菌和弧菌等)协同作用,促进Warburg效应并诱导代谢重编程,引起继发性细菌感染[14]。JATUYSPORN等人发现,白斑综合征病毒感染黑虎虾后,门水平上变形杆菌显著增加,属水平上发光杆菌丰度显著增加,种水平上美人鱼发光杆菌(Photobacterium damselae )最多。免疫和免疫相关基因的转移可以改变虾肠道中的细菌组成,证明了宿主-微生物群相互作用在理解疾病方面的重要性[15]。LPEZ等人[16]发现虾肝肠胞虫感染南美白对虾后,细菌假单胞菌属(Pseudomonas)和真菌长西氏酵母(Naganishia)数量最多,不同的细菌和真菌属可以在不同的疾病阶段发现,说明微生物丰度与疾病阶段有关。慢性感染会逐渐恶化微生物群落及其功能,导致致病性和机会性微生物的暴发。CHANG等人对感染致病性和非致病性副溶血性弧菌(Vibrio parahaemolyticus,Vp)的南美白对虾进行研究后发现[17]:短期内只能引起急性肝胰腺坏死病(Acute hepatopancreatic necrosis disease,AHPND)的非致病性副溶血性弧菌(Vp)会影响虾肠道菌群,使发光杆菌属(Photobacterium)和弧菌属(Vibrio)增加。长期则两者都会使肠道菌群的生物多样性下降。
3 其他环境胁迫
面对细菌等生物胁迫时,养殖户常常会使用抗生素进行预防与治疗。由于抗生素滥用,无论是养殖对虾,还是野生对虾,体内都能检测到一定的抗生素残留。经过食物链的富集,抗生素的残留量会进一步增加,最终危害人体健康。目前,抗生素抗性基因在水产养殖生态系统中高度传播[18-19],应加以重视。南美白对虾通常在低盐度水中饲养,低盐度使对虾更易患病,抗生素使用率随之增加。因此,人工养殖的对虾肠道微生物受到低盐度和抗生素残留两方面的影响。磺胺霉素和氯霉素常用于水产养殖,CHEN等人对这两种抗生素对南美白对虾的影响进行了研究。研究发现,与对照组相比,低盐度组拟杆菌丰度较高,蓝藻比例降低。低盐度抗生素添加组的疣微菌丰度下降,潜在益生菌红细菌科和假单胞菌减少,机会致病菌气单胞菌增加[20]。长期低盐度和抗生素共同暴露改变了肠道微生物群的多样性,增加了机会性病原体,使对虾的肠道屏障功能和消化功能受损。另一方面,在自然环境中,野生对虾也会由于全球水循环遭受抗生素胁迫。
环境污染为对虾带来了许多环境胁迫,除了重金属污染与抗生素残留外,还有塑料等污染。在对虾养殖过程中,塑料薄膜和尼龙线等塑料制品随处可见,这增加了微塑料暴露的机会。纳米塑料短期暴露使对虾肠道微生物特征发生显著变化,但是在一段时间后该变化消失[21]。LI等人发现对虾摄入的微塑料主要存在于肠道,微塑料暴露显著增加了肠道微生物多样性,对虾生长速度下降[22]。ZHU等人[23]发现纳米塑料作用后,弧菌属, 发光杆菌属(Photobacterium spp.), 黄色海水菌属和不动杆菌属(Acinetobacter spp.)丰度增加,亚硫酸杆菌属(Sulfitobacter spp.)和假交替单胞菌属(Pseudoalteromonas spp.)丰度减少。
4 总结与展望
健康对虾的肠道微生物主要由拟杆菌、变形杆菌、疣微菌和厚壁菌等组成。在正常环境中,肠道菌群会随着宿主虾的生长发育发生变化,这一动态过程可以分为三个阶段,改变喂食的日粮成分会影响宿主的体重[24]。在面对环境胁迫时,肠道菌群的动态波动会更加显著。希瓦氏菌(Shewanella)、气单胞菌和不动杆菌等是机会致病菌[20]。受到不利环境条件胁迫时,机会致病菌的丰度会增加,进而引起继发性感染。在不同胁迫条件下,有益菌群的变化不同。有益菌群的有益之处主要在于其特殊的代谢功能。疣微菌(Verrucomicobia)可以降解多糖,帮助消化饲料纤维[25]。沈氏菌(Shimia)具有水解几丁质或壳聚糖并降解芳香族化合物的潜在代谢能力[26]。潘多拉菌(Pandoraea)能够降解木质素[27]。 除了这些原核微生物外,对虾肠道菌群中还存在真核微生物。肠道真核生物群落的变化与消化酶活性呈正相关,进而可以影响虾生长性能[28]。
微生物组分与宿主的特定功能密切相关,其调节已被用于改善虾的健康、生长性能和抗病能力,以提高产量[16]。补充β-1,3-葡聚糖可以调节肠道菌群的稳态,抑制肠道炎症反应,提高机体免疫功能和抗氧化能力[29]。补充益生菌可以调节免疫系统,增加胃肠道稳定性,分泌抗菌化合物,与病原体竞争以防止肠道粘连,竞争病原体生存所需的营养并产生抗毒素作用[30]。肠道菌群除了可以应对环境胁迫外,还可以对环境胁迫起到指示作用。LU等人[31]利用肠道微生物设计了一个诊断模型,能够准确诊断AHPND的初始、进展或死亡阶段,准确率达到86.5%。除了文章中详细提到的这些外,对虾养殖过程中还会面临温度、溶解氧、氨氮、盐度、饥饿等胁迫。对对虾肠道菌群进行研究能够更好地对抗这些胁迫,增加经济效益。
参考文献:
[1]CHEN Minglong, JIN Meng, TAO Peiran, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China[J].Environmental Pollution,2018,242(Pt B):1146-1156.
[2]张家松,段亚飞,张真真,等.对虾肠道微生物菌群的研究进展[J].南方水产科学,2015,11(6):114-119.
[2]ZHANG Jiasong, DUAN Yafei, ZHANG Zhenzhen, et.al. Research progress of intestinal microbial flora in shrimp[J].South China Fisheries Science, 2015,11(6):114-119.
[3]ZHANG Siyuan, SUN Xumei. Core Gut Microbiota of Shrimp Function as a Regulator to Maintain Immune Homeostasis in Response to WSSV Infection[J].Microbiology Spectrum,2022,10(2):e0246521.
[4]郑晓婷,段亚飞,董宏标,等.甲壳动物肠道免疫系统的研究进展[J].海洋湖沼通报,2016(3):83-90.
[5]吴金凤,熊金波,王欣,等.肠道菌群对凡纳滨对虾健康的指示作用[J].应用生态学报,2016,27(2):611-621.
[4]ZHENG Xiaoting, DUAN Yafei, DONG Hongbiao, et.al. Progress on Gut Mucosal Immunization of Crustacean[J].Transactions of Oceanology and Limnology,2016(3):83-90.
[5]WU Jinfeng, XIONG Jinbo, WANG Xin, et.al. Intestinal bacterial community is indicative for the healthy status of Litopenaeus vannamei[J].Chinese Journal of Applied Ecology,2016, 27(2):611-621.
[6]HUANG Fei, PAN Luqing, SONG Mengsi, et al. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health[J]. Applied Microbiology and Biotechnology,2018,102(19): 8585-8598.
[7]SUN Fulin, WANG Chunzhong, CHEN Lijuan, et al. The intestinal bacterial community of healthy and diseased animals and its association with the aquaculture environment[J].Applied Microbiology and Biotechnology,2020,104(2):775-783.
[8]LIU Minrui, LU Xia, KHAN A ,et al. Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides[J].Journal of Hazardous Materials,2019,367:35-42.
[9]DUAN Yafei, WANG Yun, HUANG Jianhua, et al. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei[J]. Marine Pollution Bulletin,2021,167:112220.
[10]LIU Minrui, QI Xing-e, HAN Jiangyuan, et al.Reducing cadmium accumulation in shrimp using Escherichia coli with surface-displayed peptide[J].Ecotoxicology and Environmental Safety,2023,256:114858.
[11]CHEN Chengzhuang, XU Chang, QIAN Dunwei, et al. Growth and health status of pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt[J].Fish and Shellfish Immunology,2020,100:137-145.
[12]QIAN Dunwei, XU Chang, CHEN Chengzhuang, et al. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei[J]. Fish and Shellfish Immunology,2020,100:445-455.
[13]XIONG Jinbo, DAI Wenfang, ZHU Jinyong, et al. The Underlying Ecological Processes of Gut Microbiota Among Cohabitating Retarded, Overgrown and Normal Shrimp[J].Microbial Ecology,2017,73(4):988-999.
[14]HE Zihao, ZHONG Yunqi, LIAO Minze, et al. Integrated analysis of intestinal microbiota and metabolomic reveals that Decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus[J].Frontiers in Immunology, 2022,13:982717.
[15]JATUYSPORN T, LAOHAWUTTHICHAI P, ROMO J P O, et al. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon[J].Scientific Reports, 2023,13(1):996.
[16]LPEZ C J A, CRUZ F R, DHAR A K. The emerging pathogen Enterocytozoon hepatopenaei drives a degenerative cyclic pattern in the hepatopancreas microbiome of the shrimp (Penaeus vannamei) [J].Scientific Reports,2022,12(1):14766.
[17]CHANG Yiting, KO Haoting, WU Pinglun,et al. Gut microbiota of Pacific white shrimp (Litopenaeus vannamei) exhibits distinct responses to pathogenic and non-pathogenic Vibrio parahaemolyticus[J]. Microbiology Spectrum,2023,11(5):e0118023.
[18]LU Jiaqi, ZHANG Xinxu, WANG Chaohua, et al. Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm[J].Science of The Total Environment, 2021,794:148760.
[19]SU Haochang, HU Xiaojuan, XU Wujie, et al. Metagenomic analysis of the abundances, diversity, and distribution of antibiotic resistance genes and their potential bacterial hosts in two types of shrimp-rearing farms in South China[J]. Ecotoxicology and Environmental Safety,2022,241:113801.
[20]CHEN Yunsong, ZHOU Li, YU Qiuran, et al.Effects of Sulfamethoxazole and Florfenicol on Growth, Antioxidant Capacity, Immune Responses and Intestinal Microbiota in Pacific White Shrimp Litopenaeus vannamei at Low Salinity[J].Antibiotics,2023,12(3):575.
[21]CHAE Y, KIM D, CHOI M J, et al. Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure[J].Environment International,2019,130:104848.
[22]LI Hongyu, CHEN Hongwei, WANG Jiao, et al. Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp[J].Frontiers in microbiology,2021,12:717272.
[23]ZHU Chenxi, LI Yiming, LIU Guoxing, et al. Effects of nanoplastics on the gut microbiota of Pacific white shrimp Litopenaeus vannamei[J].Peer J, 2024,12:e16743.
[24]FAN Jiqiang, CHEN Limei, MAI Guoqin, et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight[J].Scientific Reports,2019,9(1):734.
[25]CARDMAN Z, ARNOSTI C, DURBIN A, et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard[J]. Applied and Environmental Microbiology,2014,80(12):3749-3756.
[26]RODRIGO-TORRES L, PUJALTE M J, ARAHAL D R. Draft genome sequence of Shimia marina CECT 7688(T)[J].Marine Genomics,2016,28:83-86.
[27]KUMAR M, MISHRA A, SINGH S S, et al. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application[J].International Journal of Biological Macromolecules,2018,115:308-316.
[28]DAI Wenfang, YU Weina, ZHANG Jinjie, et al. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp[J].Applied Microbiology and Biotechnology,2017,101(16):6447-6457.
[29]SHEN Kaikai, BAO Lixin, LIU Muxin, et al. Dietary supplementation of β-1, 3-glucan improves the intestinal health of white shrimp (Litopenaeus vannamei) by modulating intestinal microbiota and inhibiting inflammatory response [J].Frontiers in Immunology,2023,14:1119902.
[30]EL-SAADONY M T, SWELUM A A, ABO GHANIMA M M, et al. Shrimp production, the most important diseases that threaten it, and the role of probiotics in confronting these diseases: A review[J].Research in Veterinary Science,2022,144:126-140.
[31]LU Jiaqi, MAO Jiangning, QI Xuejing, et al.The assembly of gut microbiota implicates shrimp acute hepatopancreas necrosis disease progression[J]. Applied Microbiology and Biotechnology,2023,107(24):7489-7500.
Research progress on the response of the gut microbiota of shrimp to environmental stress
LI Haiyue1, ZHANG Huaidong1,2
(1.College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian China; 2. National and Local Joint Engineering Research Center for Industrial Microbialana and Fermentation Technology, Fuzhou 350117, Fujian China)
Abstract:Shrimp will encounter various environmental stress factors during the breeding process, including heavy metal pollution, pathogen infection and other pollution. In the face of these stresses, in addition to the shrimp itself, the intestinal microorganisms in its body will also respond accordingly. The intestinal flora not only has the function of indicating the health status of the host, but also can improve the immunity of shrimp and promote the growth of shrimp after adjustment. Research on intestinal flora can also enhance understanding of disease, leading to the development of more effective methods to control shrimp diseases.
Keywords:intestinal microorganisms; environmental pollution; shrimp farming
基金项目:福建省自然科学基金面上项目(2020J01181)。
作者简介:李海玥(2000-),女,福建宁古人,硕士研究生。研究方向:生物医药。E-mail:2637882038@qq.com。
通信作者:张怀东(1982-),男,江苏兴化人,博士,副教授。研究方向:微生物生物转化。E-mail:zhanghuaidong@fjnu.edu.cn。